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Abstract. A botnet is a collection of bots, each generally running on a 

compromised system and responding to commands over a "command-and-

control" overlay network. We investigate observable differences in the behavior 

of bots and benign programs, focusing on the way that bots respond to data 

received over the network. Our experimental platform monitors program 

behavior, considering data received over the network to be tainted, applying 

library-call-level taint propagation, and checking for tainted arguments to 

selected system calls. As a way of distinguishing locally-initiated from 

remotely-initiated actions, we capture and propagate “cleanliness” of local user 

input (as received via the keyboard or mouse). Testing indicates behavioral 

separation of major bot families (agobot, DSNXbot, evilbot, G-SySbot, sdbot, 

Spybot) from benign programs with low error rate. Our prototype 

implementation monitors execution of an arbitrary Win32 binary. 

1 Introduction 

Botnets have been instrumental in distributed denial of service attacks, click fraud, 

phishing, malware distribution, manipulation of online polls and games, and identity 

theft [2, 24, 30, 40, 49]. As much as 70% of all spam may be transmitted through 

botnets [4] and as many as ¼ of all computers may be participants in a botnet [53]. A 

bot master (or “botherder”) directs the activities of a botnet by issuing commands that 

are transmitted over a command-and-control (C&C) overlay network. Some previous 

network-based botnet detection efforts have attempted to exploit this ongoing C&C 

behavior or its side effects [3, 6, 40]. Our work investigates the potential for host-

based behavioral bot detection. In particular, we test the hypothesis that the behavior 

of installed bots can be characterized in a way that a way that distinguishes bots from 

innocuous processes. We are not aware of any prior studies of this topic. 

Each participating bot independently executes each command received over the 

C&C network. A bot command takes some number of parameters (possibly zero) – 

each of a particular type – in some fixed order.  For example, many bots provide a 

web-download command, which commonly takes two parameters; the first is a URL 

that identifies a remote resource (typically a file) that should be downloaded and the 

second is the file path on the host system at which to store the downloaded data. A 

botnet, therefore, constitutes a remotely programmable platform with the set of 

commands it supports forming its API. 



 

 

Many parameterized bot commands are implemented by invoking operating system 

services on the host system. For example, the web-download command connects to a 

target over the network, requests some data from that target, and creates a file on the 

host system; all of these actions (connect, network send and receive, and file creation) 

are performed via execution of system calls. Typically, a command’s parameters 

provide information used in the system call invocation. For example, the connect 

system call takes an IP address argument, which identifies the target host with which 

a connection should be established. Implementations of the web-download command 

obtain that target host IP from the given URL parameter. Thus, execution of many 

parameterized commands causes system call invocations on arguments obtained from 

those parameters. 

In this paper, we test the experimental hypothesis that the external control of bots 

through parameterized commands separates bot behavior from normal execution of 

innocuous programs. We postulate that a process exhibits external control when it 

uses data received from the network (an untrusted source) in a system call argument 

(a trusted sink). We test our hypothesis via a prototype implementation, BotSwat, 

designed for the environment in which the vast majority of bots operate: home users’ 

PCs running Windows XP or 2000 [40]. BotSwat can monitor execution of an 

arbitrary Win32 binary and interposes on the run-time library calls (including system 

calls) made by a process. We consider data received over the network to be tainted 

and track tainted data as it propagates via dynamic library calls to other memory 

regions. We identify execution of parameterized bot commands when tainted 

arguments are supplied to select gate functions, which are system calls used in 

malicious bot activity. 

Our experimental results suggest that the presence of network packet contents in 

selected system call arguments is an effective indicator for malicious Win32 bots, 

including tested variants of agobot, DSNXbot, evilbot, G-SySbot, sdbot, and Spybot. 

Bots from these families constitute 98.2% of malicious bots seen in the wild [24]. 

While these bots may implement commands in significantly different ways, 

similarities in the way they respond to external control allow a single approach to 

identify them. Additionally, the thousands of variants of each such family generally 

differ in ways that will not affect our ability to detect them; this is in contrast to 

traditional anti-malware signature scanners which may require a distinct signature for 

each variant [58]. Moreover, our generic approach does not rely on a particular 

command-and-control communication protocol (e.g., IRC) or botnet structure (e.g., 

centralized or peer-to-peer). 

Since our prototype implementation only has visibility into memory-copying calls 

made via a DLL, we introduce strategies to counteract the effects of “out-of-band” 

memory copies – those which occur outside of the interposition mechanism. In 

particular, we perform content-based tainting, which considers a memory region 

tainted if its contents are identical to a known tainted string. We also introduce 

substring-based tainting, whereby a region will be considered tainted if its contents 

are a substring of any data received by the monitored process over the network. Use 

of these strategies allows us to effectively identify bot behavior even when all of the 

bot’s calls to memory-copying functions occur out-of-band, which may be the case if 

the bot is built to statically link in memory copying functions. A consequence of 

BotSwat’s use of library-level taint propagation is that bots could apply out-of-band 



 

 

encryption functions (e.g., XOR) to network data and consequently defeat detection 

by the prototype implementation. This is a limitation of our current testing platform 

rather than a deficiency in the characterization of bot remote-control behavior. Our 

testing of versions of agobot, which encrypt C&C communications via dynamic calls 

to the OpenSSL library, indicates that remote control behavior can still be identified 

(even when communications are encrypted), given visibility into the cryptographic 

function calls. Current botnet C&C communications tend to be unencrypted [30]. 

While many bot actions, such as establishing network connections, creating files, 

and executing programs, may also be performed by benign applications, we are able 

to separate bot behavior from the behavior of benign programs by distinguishing 

between actions that are initiated locally and those which are initiated remotely by a 

botnet controller. We tested benign programs that exhibit extensive network 

interaction and that are typical to the target environment (home-user PCs). Early 

testing of benign programs revealed that a benign program may use some tainted 

value in a system call argument as a result of local user input. To account for this 

phenomenon in our experimental assessment, we designed and implemented a user-

input module that identifies data values resulting from local user input as received via 

the keyboard or mouse. These “clean strings” are used to identify instances of local 

control. Our testing of eight benign programs over a variety of activities common to 

those applications resulted in eight total flagged behaviors (five different) whereas 

testing six bots resulted in a total of 202 flagged behaviors (18 different).  

In section 2, we provide background information on bots. Section 3 describes our 

experimental method and section 4 details our prototype implementation. Our 

experimental results are given in section 5. We discuss the potential for and 

challenges to applying our findings for real-time host-based bot detection in section 6. 

Section 7 describes related work and section 8 provides concluding remarks. 

2 Bots and Botnets 

A botnet is a network of compromised machines that can be remotely controlled by a 

bot master over a command-and-control (C&C) network. Currently, IRC is the most 

common C&C communication protocol [6]. Individual bots connect to a rendezvous 

point – commonly an IRC server and channel, access to which may require password 

authentication – and await commands. Malicious bots are mostly useful in the 

aggregate – as a general-purpose computing resource – and proportionally so. 

2.1 Bot Families and Variants 

The Honeynet Project identifies four main Win32 bot families: (1) the agobot family 

– the most well known; (2) the sdbot family – the most common; (3) DSNXbot; and 

(4) mIRC-based bots [40]. A family is “a new, distinct sample of malicious code”, 

whereas a variant is “a new iteration of the same family, one that has minor 

differences but that is still based on the original” [52]. Variants may be created by 

augmenting the functionality of a bot (e.g., adding a new exploit for the bot to use in 

spreading) or by applying “packing transformations” (such as compression and 



 

 

Figure 1: Capabilities of tested bots and success of our testing method 

 

capability ago DSNX evil G-SyS sd Spy 

change C&C server √ √  √ √ √ 

create/manage clone  √  √ √  

clone attacks  √     

create spy    √ √  

kill process √   √  √ 

open/execute file √ √  √ √ √ 

keylogging  √    √ 

create directory      √ 

delete file/directory  √    √ 

list directory  √    √ 

move file/directory      √ 

DCC send file  √    √ 

act as http server      √ 

create port redirect √ √  √ √ √ 

other proxy √      

download file √ √  √ √ √ 

DNS resolution √   √ √  

UDP/ping floods √  √ √ √  

other DDoS floods √   √  √ 

scan/spread √ √  √ √ √ 

spam √      

visit URL √   √ √  
Shaded cells represent activities detected by BotSwat. 

encryption) to a bot binary [52, 58]. We tested at least one variant from each of the 

first three major Win32 bot families (agobot, sdbot, and DSNXbot) as well as evilbot 

and Spybot. Since bots in the wild may link in C library functions statically or 

dynamically, we tested bots under both conditions. Data from McAfee suggests that 

bots from the agobot, sdbot, and Spybot families collectively constitute 98.2% of 

known variants (as of June 2005). Signature-based methods may require analysis and 

generation of a distinct signature for each such variant [58]. Moreover, evidence 

suggests that malware writers may be able to infer the byte sequences used to identify 

malware variants and thus evade detection via applying targeted transformations [50]. 

2.2 Bot Capabilities and Commands 

In general, bot commands can be categorized as performing one or more of: process 

management, file management, bot management, network interaction, and local 

spying. Figure 1 provides a summary of some of the functionality exported by the 

tested bots. The shaded cells represent activities that are detected by BotSwat as 

described in section 5. Note that, of the 22 different bot activities listed, 21 are 

implemented as parameterized commands by each of the bots that provides that 



 

 

Figure 2: The number of system calls invoked during successful execution of commands 

 ago DSNX evil G-SyS sd Spy 

Total # syscalls invoked by all commands 591 145 5 187 173 202 

Total … invoked by candidate commands 417 114 5 122 110 145 

 

capability. The exception is keylogging, which – for both of the bots that perform it – 

logs the captured keystrokes to a file whose name is statically configured. This chart 

reflects the bot versions we tested; different variants from each of these families may 

export more or less functionality. 

2.2.1 Candidate Commands 
Since our characterization of bot behavior exploits the fact that command parameters 

are often used in system call arguments, we identify candidate commands as those 

which take at least one parameter that is subsequently used (in whole or in part) in an 

argument to a critical system function. Non-candidate commands take no parameters 

or their parameters have only “local meaning” to the bot and thus are not 

subsequently used in any system-wide function. 

Naturally, we would like to understand how much of a bot’s remote-control 

behavior can be attributed to candidate commands. We therefore counted the number 

of distinct system calls invoked during a successful execution of each bot command 

and summed these values across all commands and across candidate commands. 

These values are provided in figure 2. We obtained the number of system calls 

invoked during successful execution of a bot command through inspection of bot 

source code. We did not include in these tallies memory- or string-copying functions 

or functions which convert between endianness formats (e.g., htonl). 

The number of system calls invoked by a bot’s candidate commands accounts for 

around 64 to 79% of the system calls invoked by all of the bot’s commands. 

Interestingly enough, the non-candidate commands that cause the highest number of 

system call invocations generally perform beneficial tasks (from the perspective of the 

compromised host). For example, for agobot, of the 174 system call invocations over 

execution of all non-candidate commands, 26 of these occur as a result of executing 

commands to uninstall the bot (bot.removeall and bot.removeallbut) and 25 

of these 174 occur as a result of executing the bot.secure command, which patches 

up the compromised host’s vulnerabilities. Thus, approximately 30% of system call 

invocations over all of ago’s non-candidate commands occur as a result of executing 

commands beneficial to the compromised host. Similar patterns also held for G-SyS 

and sd. 

3 Experimental Method 

We developed a host-based method that identifies instances of external control, 

whereby a process uses data it received from an untrusted source in a system call 

argument without having received intervening (local) user input implicitly or 

explicitly agreeing to this use. We describe the required components generally in 



 

 

order to underscore the notion that BotSwat is merely one implementation of this 

method; alternative approaches to tracking taintedness, e.g., may be substituted.  

Tainting Component This component identifies when untrusted data is received by the 

system (taint instantiation) and tracks that data as it propagates to other memory 

regions (taint propagation). For our method, taint instantiation occurs upon network 

receive, and taint propagation keeps track of memory regions to which tainted data is 

written. This component exports an interface that enables querying whether a 

particular memory region is considered tainted. 

 

User Input Component This purpose of this component is to identify actions that are 

initiated by the local application user. A primary challenge in designing this 

component is to identify the data values corresponding to mouse input events where 

this mapping (from event to value) is heavily application-dependent and not typically 

exposed (i.e., available via a library call). This component exports an interface that 

enables learning whether a data value or memory region is considered clean or 

whether a syscall invocation is likely the result of user input. 

 

Behavior-Check Procedure Triggered by invocation of selected system calls, this 

procedure queries the tainting and user-input components to determine whether to flag 

the invocation as exhibiting external control. For example, this procedure might flag 

an invocation on an argument that contains more tainted than clean data. 

4 Implementation 

This section describes the interposition approach and the tainting, user-input, and 

behavior-check instrumentation we use to evaluate our hypothesis. 

4.1 Library and System Call Interposition 

We use the detours library provided by Microsoft Research for library- and system-

call interposition [9, 10]. Our platform consists of a set of functions that we want to 

interpose upon, a replacement function for each, and a mechanism for performing 

interposition. The replacement functions contain the tainting, user-input, and 

behavior-check instrumentation. This platform is packaged as a DLL that can be 

injected into a target process upon creation of that process. 

4.2 Tainting Module 

Our tainting module defines taintedness as a property of certain memory addresses, 

strings, and numeric values. The module operates dynamically at the library call level 

and considers input received over the network tainted. Taint propagation functions 

include those which copy memory from a source to a destination buffer (e.g., 



 

 

memcpy), convert a buffer’s contents to a numeric value (e.g., atoi), or convert one 

numeric value to another (e.g., htons). 

As a result of out-of-band memory copies, our mechanism may possess one of two 

flawed views regarding a particular memory region. In particular, if a destination 

region D is written to with tainted data via an out-of-band operation, we will not 

know that D should be considered tainted. Our belief that D does not contain tainted 

data is a false negative. Similarly, a tainted region T may be written to via an out-of-

band operation with untainted data; in this case, our belief that T is tainted is a false 

positive. We introduce techniques to reduce false negatives (content-based and 

substring-based tainting) and false positives (content-matching). 

There are three conditions under which a region may be considered tainted: 

address-based, content-based, and substring-based. Under address-based tainting, a 

memory region is considered tainted only if its address range overlaps with that of a 

known tainted region. With content-based tainting, a memory region M will be 

considered tainted if M’s contents are identical to a known tainted string. Under 

substring-based tainting, a memory region will be considered tainted if its contents 

are a substring of any data received over the network by this process. 

To reduce false positives, we perform content-matching: for a believed-to-be-

tainted memory region M, before taking any action on the basis of M’s supposed 

taintedness, we confirm that M’s contents match the relevant portion of the network 

receive buffer from which M allegedly descended. The information needed to perform 

such a comparison (an identifier of the ancestor network receive buffer, the offset into 

that buffer from which this tainted data descended, the number of bytes of tainted 

data, etc.) is contained in the data structure describing a tainted memory region. 

The tainting module may run in one of two modes, which differ in the conditions 

used to determine taintedness. Under cause-and-effect propagation, a memory region 

is considered tainted if the address-based or content-based conditions hold. Under 

correlative propagation, a memory region will be considered if any of the three 

conditions holds. Consequently, these modes differ in the amount of resilience 

provided against out-of-band copies. Cause-and-effect propagation was designed for 

the case where the majority of memory-copies made by a monitored program are 

visible to the interposition mechanism. We refer to this as cause-and-effect 

propagation since, in applying it, there is a tight causal relationship between receipt of 

some data over the network and use of that data in a system call argument. That is, we 

can point to a sequence of memory copies from a network receive buffer to a system 

call argument buffer. Correlative propagation, on the other hand, was designed for the 

case where all memory copies occur out of band – such as can occur when a bot 

statically links in C library functions. This mode is referred to as correlative 

propagation since, in applying it, we are ultimately identifying when data received 

over the network correlates to that used in system call arguments. 

Once we determine that a source argument is tainted – via applying the appropriate 

conditions, given the mode, and performing the content-matching checks – taint 

propagation proceeds in the following way. We ensure the buffer’s contents exist as a 

tainted string and also that its address range is a known tainted region. If the taint 

propagation function copies some portion of this source buffer to a destination buffer 

(e.g., strncpy), the corresponding portion of the destination region is transitively 

marked tainted. If, on the other hand, the taint propagation function converts the 



 

 

source buffer to a numeric value (e.g., inet_addr), we add the numeric result to our 

collection of tainted numbers. Finally, if the taint propagation function converts one 

number to another (e.g., htons), if the source number is tainted, we add the 

destination value to our set of tainted numbers as well. 

4.3 User Input Module 

Our implementation tracks local user input as received via the keyboard or mouse and 

considers subsequent use of such clean data, such as in a system call argument, 

innocuous. Obtaining the data value corresponding to a keystroke is generally 

straightforward as the system generates a message in response to keyboard input for 

the target application identifying the key or character. Our implementation monitors 

such messages and creates, for each line of keyboard input, a clean string consisting 

of the previously input characters.  

Obtaining the data values or actions corresponding to a mouse input event is more 

challenging as the system will generate, upon receipt of such an event, a message 

which merely identifies the target window, type of event (e.g. left button down), and 

coordinate pair within that window at which the event occurred. Thus, the actual data 

value corresponding to such an event is application-defined and not available via a 

library call. Our implementation addresses this opacity via exploiting locality of 

reference.  

For a Windows input event E, the application that received E calls 

DispatchMessage to pass E to the application window procedure responsible for 

handling it. This window procedure must process E prior to returning from 

DispatchMessage [51] and may invoke system calls in its processing. We find that 

– because of the semantics of DispatchMessage – data values relating to an input 

event are generally referenced by interposed-upon functions during execution of this 

library call. Thus, upon entry to DispatchMessage and until return from it, we add 

any string referenced by any interposed-upon function to our collection of clean 

strings. Therefore, while we may not be able to determine the specific data value or 

action that corresponds to a mouse input event, we may be able to obtain a set of data 

values that in practice contains the correct one. 

4.4 Behavior-Check Procedure 

Our ability to identify bot behavior relies in part on our selection of appropriate 

system calls and their arguments to check for taintedness and cleanliness. The 

collection of bot capabilities (figure 1) informed our selection of system calls (gates) 

and their particular arguments (sinks); these are described below. The algorithm is as 

follows. If the sink type is numeric, we query the tainting module to determine 

whether that argument value is tainted; if so, we flag the invocation; if not, we pass 

control to the system call. If the sink type is a data buffer, we query the tainting 

module to determine whether some portion of that buffer is tainted. If not, we cease 

processing this invocation, passing control to the system call. If so, we query the user-

input module about this same argument. If the user-input module indicates that no 



 

 

Figure 3: Detected behaviors; gate functions for each behavior; sink arguments for gate 
 

 Behavior API function (gate) Sink argument [argument #] 
B1 tainted open file NtOpenFile filename [2] 

B2 tainted create file NtCreateFile filename [2] 

B3 tainted program execution CreateProcess{A,W}; WinExec prog name [0], cmd line [1]; prog name [0] 

B4 tainted process termination NtTerminateProcess process name, PID [0] 

B5 bind tainted IP NtDeviceIoControlFile 
IP [6] 

B6 bind tainted port NtDeviceIoControlFile port [6] 

B7 connect to tainted IP connect; WSAConnect IP [1]; IP [1] 

B8 connect to tainted port connect; WSAConnect port[1]; port [1] 

B9 tainted send NtDeviceIoControlFile; SSL_write 
send buffer [6]; send buffer [1] 

B10 derived send NtDeviceIoControlFile; SSL_write send buffer [6]; send buffer [1] 

B11 sendto tainted IP sendto; WSASendTo IP [4]; IP [5] 

B12 sendto tainted port sendto; WSASendTo port [4]; port [5] 

B13 tainted set registry key NtSetValueKey 
value name [1] 

B14 tainted delete registry key NtDeleteValueKey value name [1] 

B15 tainted create service CreateService{A,W} service name [1]; binary path name [7] 

B16 tainted open service OpenService{A,W} service name [1] 

B17 tainted HttpSendRequest HttpSendRequest{A,W} 
host, path, and referrer [0, 1] 

B18 tainted IcmpSendEcho IcmpSendEcho IP [1] 

 

portion of the argument is clean, then the invocation is flagged. If, on the other hand, 

that module indicates that some portion of the argument is clean, this procedure will 

flag the invocation only if the argument contains more tainted than clean data. For a 

character buffer, the portion tainted is the number of bytes of tainted data in that 

buffer and the portion clean – the number of bytes of clean data in the buffer. 

A behavior is a general description of an action that may be detected via checking 

particular arguments for one or more system calls. In some cases, the same gate 

function may be instrumented to detect multiple behaviors. For example, 

NtDeviceIoControlFile is invoked by both bind and send and thus behaviors 

pertaining to port binding and network send entail checking arguments to this system 

call. Conversely, in some cases, multiple library functions are instrumented to check 

for a single behavior. Figure 3 contains the complete list of behaviors, the gate 

functions for each behavior, and the sink arguments for each identified gate function. 

Two behaviors (tainted send and derived send) require a bit more explanation. 

Tainted send occurs when data received over one connection (or socket) is sent out on 

another. Most commonly, tainted send was exhibited by two command types: 

redirects and those that generate network messages. When the bot is acting as a proxy 

(port redirect), it echoes out on a second socket what it heard on the first. For 

commands that generate network messages, the data heard on the first socket specifies 

the parameters to send on the second (e.g., the received URL identifies the file path to 

request in an outgoing HTTP GET message). Since an application may commonly 



 

 

receive and send certain fixed strings over a variety of connections, we do perform 

content-based or substring-based tainting for such strings. The set of such strings is 

small, application-specific, and generally consists of protocol header fields; e.g., a 

browser’s set includes “HTTP/1.1” and “Accept-Range”. Consequently, the tainted 

send behavior is not flagged for transmission of routine messages that do not 

otherwise contain tainted data. Derived send occurs when we obtain from some 

system call f on some tainted input X some value Y (where X != Y) then subsequently 

send Y out on any socket. Various data leaking commands match derived send, such 

as those that take a parameter identifying a registry key and return its value. 

5 Experimental Evaluation 

This section provides the results of testing our experimental hypothesis that the 

remote control behavior of bots can be detected via checking selected system calls for 

tainted arguments. In order to determine the usefulness of this characterization of 

external control, we compare the effects of detected commands to those of all 

commands. Finally, we measure whether benign programs exhibit external control. 

5.1 Terminology 

For each malicious bot, we tested execution of its candidate commands, as in 2.2.1. 

When BotSwat flags a system call invocation, we say that a behavior is detected. If 

flagging this invocation is incorrect, we refer to this as a false positive. Any behavior 

flagged for a benign program is considered a false positive. If BotSwat fails to flag a 

system call invocation on an argument that contains data received over the network 

(most likely because BotSwat does not know that this argument should be considered 

tainted), we say a behavior is exhibited but not detected and refer to this as a false 

negative. A command is detected when BotSwat correctly flags at least one behavior 

exhibited by that command. 

5.2 Bot Results 

In summary, we found that the external or remote control behavior of bots can be 

measured by identifying system call invocations which use tainted parameters. 

Moreover, the effects of a bot’s detected commands account for the majority of the 

effects of all of a bot’s commands (where effects are measured via number of system 

call invocations). Also, bots in general exhibit a great volume and diversity of 

behaviors. Figure 4 provides a summary of our test results. Row 1 identifies the total 

number of commands provided by each of the tested bots. The number of those 

commands that take at least one parameter that is subsequently used (in whole or in 

part) in a critical system function is provided in row 2. The 3rd row gives the number 

of candidate commands that were detected using cause-and-effect propagation (C&E) 

for bots built with C library functions dynamically linked in (DYN). The last row 

shows the number of candidate commands detected using correlative propagation 



 

 

Figure 4: Summary of bot-command detection 

  ago DSNX evil G-SyS sd Spy 

# commands 88 28 5 56 50 36 

# candidate commands 36 14 5 26 20 15 

# commands detected (DYN, C&E)  33 14 N/A 26 20 15 

# commands detected (STAT, CORR) 31 10 5 12 12 15 

 

(CORR) on bots built with statically linked in C library functions (STAT). We did not 

have a version of evilbot which dynamically linked in C library functions. All tested 

bots either primarily or exclusively use C library functions for memory copying. 

5.2.1 Detection of Commands on Dynamically-Linked Bots 
The best detection occurs under cause-and-effect propagation on dynamically-linked 

bots, since these conditions provide the best visibility into the bot’s use of data 

received over the network. Only three total candidate commands were not detected in 

this mode: agobot’s harvest.registry and scanning commands. Agobot’s 

scanning commands use a transformation of a received parameter in a system call 

argument. Taintedness was not propagated across this transformation operation and 

thus the scan.start and scan.startall commands were not detected. In 

particular, the scan commands take an IP prefix range; ago then generates and scans 

random IP addresses within that range.  Additionally, the same set of commands were 

detected (and the same behaviors flagged for each command) for agobot whether that 

bot encrypted command-and-control messages via dynamic calls to the OpenSSL 

library or not. This supports our claim that detection of remote control is resilient to 

command encryption, given visibility into the cryptographic function calls. 

5.2.2 Detection of Commands on Statically-Linked Bots 
Although static linking severely hinders visibility into a bot’s use of received data, we 

were still able to detect many of the bots’ candidate commands by correlating 

received network data to system call arguments. Section 5.2.3 explores the effects of 

detected vs. undetected commands and gives some evidence that these undetected 

commands are significantly less harmful than are the detected commands. We also 

note that that many of the undetected commands rely on the previous execution of a 

command this is detected under these conditions. In particular, three of DSNX’s four 

undetected commands (75%), seven of sdbot’s eight (87.5%), and seven of G-

SySbot’s fourteen (50%) perform clone management; this functionality only makes 

sense when a clone exists to be managed. The command that creates a clone – for 

each of these three bots – was detected under STAT, CORR. There were three false 

positives under this mode; in all cases, the incorrectly flagged behavior was in fact 

malicious but was not an example of external control. 

The candidate commands that were not detected share a common property that 

could be used to produce even better detection results. Specifically, 24 of the 28 

undetected commands use sprintf to format the argument buffers passed to system 



 

 

Figure 5: The number of system calls invoked during successful execution of commands 

 

 ago DSNX evil G-SyS sd Spy 

Total # syscalls invoked by all commands 591 145 5 187 173 202 

Total  … by candidate commands 417 114 5 122 110 145 

Total  … by detected commands (DYN, C&E) 393 114 N/A 122 110 145 

Total  … by detected commands (STAT, CORR) 386 110 5 99 99 145 

 
calls. The call to this buffer-formatting function was not visible to BotSwat and thus it 

was not able to infer that the resulting argument buffers contained (among other data) 

strings received over the network. However, statistical tests that measure how similar 

an argument buffer is to data received over the network are likely to provide 

significant gains here.  

5.2.3 The Effects of Candidate Commands Relative to All Commands 
In addition to measuring success by comparing the number of detected to the number 

of candidate commands, we can also compare the number of system calls invoked by 

detected commands to the number of system calls invoked by candidate commands. 

This gives us better perspective on our results. For example, under correlative 

propagation on a statically-linked version of G-SySbot, we detect only 12 out of 26 

candidate commands (46%), as in figure 4, row 4. However, when we compare the 

number of system calls invoked by detected (99) vs. candidate (122) commands under 

these same conditions, as in figure 5, row 4, the results are more encouraging (81%). 

The same also holds for DSNX and sdbot. This is a consequence of the relative 

severity of commands we are able to detect under these conditions. 

5.2.4 Bots Exhibit Volume and Diversity of Behaviors 
For each bot command, we counted the number of distinct behaviors correctly 

detected in a successful execution of that command. Then we tallied these values 

across commands, giving us the number of times each behavior was detected for each 

bot (figure 6). Note that in practice the raw number of detected bot behaviors might 

be much larger since execution of certain commands may cause the same behavior to 

be repeatedly flagged. This is the case with execution of denial-of-service commands, 

which often cause a particular behavior to be flagged with transmission of each 

denial-of-service packet. We note that the distribution of detected bot behaviors 

across families is not uniform; e.g., behavior B11 (sendto tainted IP) is frequently 

flagged in agobot but never in DSNXbot and only rarely in G-Sys, sd, and Spybots. 

Such differences may be leveraged to perform classification of an encountered bot as 

more likely to be a variant of a particular family. 

5.3 Benign Program Results 

We tested eight benign applications that exhibit extensive network interaction across a 

variety of activities typical to these programs. False positives in this context are any 

instances in which a system call invocation is flagged. This could arise from 



 

 

imperfections in our user-input module implementation, which may not be able to 

infer that a system call invocation is the result of local user input. Alternatively, a 

benign program may genuinely exhibit external or remote control. There were eight 

false positives; two for the browser, three for the email client, two for the IRC client, 

and one for the IRC server. The programs, activities across which their behavior was 

traced, and results are described below. 

5.3.1 Benign Program Testing 
We chose applications typical to our target environment that exhibit significant 

network interaction. We tested a browser (Mozilla firefox), an email client (Eudora), 

an IRC client (mIRC), an ssh client (putty), FTP clients (WS_FTP and SecureFX), an 

anti-virus signature updater (Symantec’s LiveUpdate, LuComServer_3_0.exe), and an 

IRC server (Unreal IRCd). Since the majority of systems infected with bots are those 

of home users (who do not typically run server programs) [48], we tested against only 

one server program. We note, however, that server programs may, at an abstract level, 

be designed to respond to certain types of external control (that exerted by the client). 

We used the browser to visit a variety of sites, some of which contained linked-in 

images. Once at a site, we clicked on hypertext links, downloaded files specified by 

links, saved the web page’s contents to a file, executed downloaded programs from 

within the browser, etc. With the email client, we received, composed, replied to, 

forwarded, and sent email, including and excluding attachments, and including and 

excluding HTML. We also saved and executed received attachments from within the 

email client. We exercised the IRC client over a range of its capabilities: connecting 

to a server and channel, messaging, DCC file transfer, DCC chat, etc. We used the ssh 

client to connect to and execute commands on a remote host. Using FTP clients, we 

connected to and browsed various FTP sites, navigated across directories 

(alternatively using the mouse and keyboard), and downloaded files. We tested the 

anti-virus signature updater via establishing a base state with stale virus definitions 

files then instructing the updater to get the latest AV signatures. Finally, the IRC 

server was networked to other servers and serviced clients. 

We tested each application over all of its activities under four scenarios; each 

combination of cause-and-effect or correlative propagation and with the user-input 

Figure 6: Over execution of all of a bot’s commands, the number of times each behavior was detected 

 

 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 

ago 5 6 7 2 1 5 14 2 14 1 7 3 1 1 1 1 0 0 

DSNX 4 4 2 0 0 1 6 4 8 0 0 0 0 0 0 0 0 0 

evil 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G-SyS 1 1 8 0 0 1 8 4 10 1 1 1 0 0 0 0 3 1 

sd 1 1 2 0 0 1 8 4 10 1 1 1 0 0 0 0 3 1 

Spy 4 5 1 1 0 2 4 3 1 0 1 1 0 0 0 0 0 0 

                   

Total 15 17 25 3 1 10 40 17 43 3 10 6 1 1 1 1 6 2 

 

 



 

 

module enabled or disabled. We present the results of running under correlative 

propagation (which has the most relaxed requirements for taintedness) with the user-

input module enabled though note briefly that absent the user-input module our ability 

to distinguish execution of benign programs from that of malicious bots suffers. 

5.3.2 Benign Program Results 
Four of the eight false positives occur as a result of the automatic downloading of 

linked-in images performed in rendering an HTML document. Two of these were 

exhibited by the browser and two by the email client, both upon receipt of an HTML 

document containing an <IMG SRC=”…”> element. Receipt of such an element 

causes the browser or email client to request the content specified in the URL, which 

is the value of the SRC attribute. Also, when the user receives an email with an 

attachment, Eudora automatically creates a file of the same name (as the received file) 

in its attachments directory. This causes the tainted open file behavior (B1). 

The mIRC client generated two false positives as a result of performing Direct 

Client Protocol (DCC) file receipt. These false positives reveal limitations in our user-

input module implementation. In preparation for DCC file transfer, the file sender 

provides an IP and port to the recipient via a network message. The recipient then 

creates a TCP connection to the sender using the specified IP and port. Therefore, 

behaviors B7 (connecting to a tainted IP) and B8 (connecting to a tainted port) were 

flagged. Prior to the chat client creating such a connection, however, the client asks 

the user whether he wishes to perform this operation and will only proceed if the user 

responds affirmatively. Our user-input module was not able to infer the connection 

between the user input agreeing to this behavior (via a dialog box) and the values used 

to create the network connection. 

The IRC server repeatedly exhibited the tainted send behavior (B9) – which 

identifies when data heard over one socket is sent out on another. Clearly this 

behavior is expected, since the overriding purpose of an IRC server is to participate in 

a chat network, which entails receiving messages and sharing those with its clients 

and/or other servers. 

5.3.3 Benign Results Discussion 
We note that there exists a configuration for each of the browser, email client, and 

IRC client that would suppress exhibition of six of the eight total false positives. In 

particular, the browser can be configured to not automatically download linked-in 

images as can the email client (four behaviors total). Also, the IRC client can be 

configured to never participate in DCC file receipt (two behaviors). We find it 

interesting that most of the detected behaviors of benign programs may be known to 

carry a risk and thus our flagging of these behaviors may not be totally inappropriate. 

Figure 7 summarizes the exhibition of behaviors across all tested programs. We note 

that bots exhibit high volume (202 across all bots and all commands, as in figure 6) 

and great diversity (18 different) of behaviors. By contrast, only eight behaviors total 

(five different) were flagged over execution of all benign programs even when testing 

under the most liberal taint propagation mode, correlative. We discuss how one might 

handle these false positives – if a bot detection system were built based upon our 

findings – in section 6. 



 

 

Figure 7: For each tested bot and benign program, the number of distinct behaviors detected (out of 18) 

 

 # distinct behaviors which behaviors 

agobot 16 B1 – B16 

G-SySbot 12 B1 – B3, B6 – B12, B17, B18 

sdbot 12 B1 – B3, B6 – B12, B17, B18 

Spybot 10 B1 – B4, B6 – B9, B11, B12 

DSNXbot 7 B1 – B3, B6 – B9 

evilbot 1 B3 

Eudora 3 B1, B7, B17 

Firefox 2 B7, B9 

mIRC IRC client 2 B7, B8 

Unreal IRCd 1 B9 

Putty 0 None 

SecureFX 0 None 

Symantec AV updater 0 None 

WS_FTP 0 None 

 

5.4 Performance Results 

Function interception via the detours library imposes an overhead of fewer than 400 

nanoseconds per invocation [10]. We measured the overall performance impact of 

BotSwat’s instrumentation via scripting a bot to receive then execute various 

commands then measured the bot’s performance natively and under each of our two 

propagation modes. These tests indicate that the overall performance overhead is 

2.81% when using cause-and-effect propagation and 3.87% under correlative. 

6 Potential for Host-Based Bot Detection and Future Directions 

The goal of our study is to determine whether the remote control behavior of bots can 

be identified by checking arguments to selected system calls for taintedness. We 

looked at bots from families whose variants collectively constitute 98.2% of all bots 

[52] and were able to identify the vast majority of their remote-control behavior. 

Benign programs exhibited far fewer and a much less diverse set of behaviors. These 

results are particularly encouraging in light of the challenges facing traditional 

signature-based malware detection mechanisms and the need for an effective method 

to identify bots. In particular, our approach is immune to the implementation 

differences that commonly distinguish bot variants of a particular family (as in [58]) 

and even differences that distinguish between bots of different families. Signature-

based approaches, by contrast, may require a priori analysis of each malware variant 

(and certainly each family) before they can protect against it [58].  



 

 

Consequently, our work raises questions about whether behavioral monitoring 

could provide host-based bot detection and, if so, how. Adequately answering this 

question is a research problem unto itself. We touch briefly below on some of the 

challenges to building a bot detection mechanism based on our findings and note that 

generally the challenges may differ depending upon the assumed attacker power (i.e., 

user-space or kernel-space access). There are some interesting issues surrounding 

when to label a process a bot; figures 6 and 7 provide some starting insight. 

System Call Interposition Mechanism The challenges here are general, well studied 

[54], and affect the tainting module, the user-input module, and the behavior-check 

procedure. Each must be implemented in a way that provides visibility into the 

actions taken by a monitored process. As a starting point, we note that sophisticated 

versions of the bots we tested ship with anti-debugger, anti-emulation, anti-virtual 

machine mechanisms [30]. Also, bots can detect inline function hooks (such as used 

in our prototype implementation) via examining the first five bytes of a detoured 

function [8]. Moreover, there are a variety of ways to perform an end-run around 

these hooks [13]. One solution might be to use kernel-land rather than user-land 

hooks but even these can be detected and subverted [38]. Moving the IDS to a Virtual 

Machine Monitor as in [39] is another approach which may be especially promising 

given hardware-implemented virtualization. 

Tainting Challenges and Tradeoffs While lightweight from a performance 

perspective, library-call level taint propagation may not detect bot behaviors when 

private (out-of-band) cryptographic functions are used. An assembly-code-level 

tainting module (such as via an emulator, as in [16]) would eliminate this threat, 

though currently poses a significant performance penalty. Additionally, tainting 

implementations commonly provide either an explicit or implicit way to launder 

tainted data. For example, if taintedness is not propagated across writes to persistent 

storage or communications between processes, e.g. via pipes, these are avenues for 

laundering. Designating additional sources as untrusted would require reevaluation of 

our hypothesis against benign programs to ensure the behavioral distinction holds. 

User Input Module Challenges There are two considerations here: functionality and 

security. Since the meaning of local user input is often heavily application-defined, 

user input modules that incorporate application-specific information are likely to 

more precisely and accurately identify data values associated with local user input and 

possibly even the intended or legitimate uses of such values. This may be particularly 

helpful if bots migrate from being standalone applications to running as part of some 

known benign application, such as a bot implemented as a browser extension. 

Regarding security, there are two types of threats to the user-input module: (1) fooling 

the module into believing that user input has been received by the process; (2) 

genuinely obtaining local user input. Regarding the first, depending upon the 

module’s implementation, it may be useful to incorporate a kernel-level component 

that identifies when local user input events are received. This would prevent user-

space spoofing – by the bot – of local user input events as via system calls [55, 56] or 

calls to DispatchMessage. As for (2), the bot writer could create a window and 

trick the user into providing input, exploiting the module’s consequent generation of 

clean strings. 



 

 

Whitelisting Benign Program Behaviors Since it is not uncommon for applications to 

be increasingly extensible, we may wish to monitor known benign programs for bot 

behavior. For example, a bot implemented as a browser extension could be detected 

by monitoring execution of the browser. However, we have seen that a browser may 

generate two behaviors (in its automatic downloading of linked-in images) during 

legitimate operation. There are several possible responses to this. First, we may 

refrain from identifying a process as a bot until that process generates some volume 

and diversity of behaviors. Requiring a process to generate five different behaviors 

before identifying this process as a bot could be a reasonable tradeoff. An alternative 

approach would be to whitelist certain behaviors for certain programs. For example, 

we might suppress flagging the two behaviors generated by the browser when 

monitoring its execution. 

Future Directions Other research questions include the feasibility of: correlating 

component behaviors to identify execution of high-level commands; designing a more 

fine-grained user-input module; identifying a bot’s likely ancestry (i.e., which family 

this instance is a variant of); combining our host-based, behavioral bot detection with 

network-based approaches; and applying this same characterization to other malware 

which exhibit remote-control behavior, such as backdoor programs. 

7 Related Work 

Applications of Tainting Analysis Tainting has been applied statically, dynamically, at 

a language level, via an interpreter, an emulator, compiler extensions, etc. [1, 14, 16, 

19, 20, 32, 43]. Most commonly, security-motivated tainting has been used to identify 

vulnerabilities in or exploitations of non-malicious programs [1, 16, 19, 20, 32, 43]. 

Host-Based Intrusion Detection The problem of distinguishing execution of an 

installed malicious bot from that of innocuous processes differs from that explored by 

much previous run-time, host-based, anti-malware research, which has focused on 

identifying when a host program (generally assumed to be non-malicious) has been 

exploited [5, 16, 17, 34, 44]. While a bot may be spread via leveraging such exploits, 

monitoring execution of an installed bot using one of these mechanisms will generally 

not result in the bot being identified as malicious since no exploit of a local host 

program is entailed in normal bot execution. Other behavior-based research has been 

done to identify rootkits and spyware [7, 37, 39, 47]. 

Botnet Detection We are not aware of any existing approaches to behavioral host-

based bot detection. Some existing network-based approaches to botnet detection 

have exploited the ongoing C&C behavior [40] with others focusing on detecting 

secondary effects of botnets [6], such as increased rate of Dynamic DNS queries [3], 

or mitigating the effects of a botnet at a DDoS victim [35]. Other approaches include 

content-based network intrusion detection signatures [21] and using heuristics to 

identify certain IRC channels as likely rendezvous points. Clearly, content-based 

signature approaches are fragile since bot writers have total control over the content 

being communicated to and from bots. Similarly, approaches based on identifying a 

botnet at the rendezvous point are only as effective as the coverage of rendezvous 



 

 

points is complete. Finally, while there is clearly value in mitigating the effects of 

botnets at a DDoS target, botnets pose a significant threat even excepting this 

functionality [2, 24, 30, 40, 49]. 

8 Conclusions 

Botnets present a serious and increasing threat, as launching points for attacks 

including spam, distributed denial of service, sniffing, keylogging, and malware 

distribution [2, 28]. Our work explores whether the execution of malicious bots can be 

distinguished from that of innocuous programs. We provided a characterization of the 

remote control behavior of bots, identified the fraction of current bot remote-control 

behavior covered by this characterization, built a prototype implementation, and 

evaluated our hypothesis against six bots from five different families and a variety of 

benign applications typical to the target environment. We introduce techniques, such 

as content-based and substring-based tainting, that enable us to effectively identify a 

bot’s remote control behavior even when visibility into the memory-copying calls 

made by a bot is severely limited.  

Experimental evaluation suggests that the external or remote control behavior of 

bots can be detected by identifying system call invocations which use tainted 

parameters. We see that the effects of a bot’s candidate commands (as measured via 

number of system call invocations) constitute the vast majority of the effects of all of 

a bot’s commands. We also see that bots in general exhibit a great volume and 

diversity of behaviors. Finally, we note that, when we track local user input and 

sanitize subsequent uses of it, benign programs relatively rarely exhibit the external 

control behavior that we’re measuring. 

Our prototype implementation detects execution of a range of parameterized bot 

commands, taking advantage of the fact that bots are programmable platforms 

responding to commands received from a botnet controller over a command-and-

control network. Since most known bot activity is associated with commerce in 

programmable distributed bot platforms, our method works because it detects 

precisely the functionality that makes bots most useful to their installers. 
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