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Another MAC construction: 
HMAC
• Idea is to turn a hash function into a 

MAC

• Since hash functions are often much faster than 

encryption

• While still maintaining the properties of being a 

cryptographic hash


• XOR the key with the i_pad

• 0x363636... (one hash block long)


• Hash ((K ⊕ i_pad) || message)

• XOR the key with the o_pad

• 0x5c5c5c...


• Hash ((K ⊕ o_pad) || first hash)
4

function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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Why This Structure?

• i_pad and o_pad are slightly arbitrary

• But it is necessary for security for the two values 

to be different

• So for paranoia chose very different bit patterns


• Second hash prevents appending data

• Otherwise attacker could add more to the 

message and the HMAC and it would still be a 
valid HMAC for the key


• Wouldn't be a problem with the key at the end but at 
the start makes it easier to capture intermediate 
HMACs


• Is a Pseudo Random Function if the 
underlying hash is a PRF
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function hmac (key, message) { 
    if (length(key) > blocksize) { 
        key = hash(key) 
    } 
    while (length(key) < blocksize) { 
       key = key || 0x00 
    } 
   o_key_pad = 0x5c5c... ⊕ key 
   i_key_pad = 0x3636... ⊕ key    
    return hash(o_key_pad ||  
                hash(i_key_pad || message)) 
} 
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The Facebook Problem: 
Applied Cryptography in Action
• Facebook Messenger now has an encrypted chat option

• Limited to their phone application


• The cryptography in general is very good but uninteresting

• Used a well regarded asynchronous messenger library (from Signal) with many good 

properties


• When Alice wants to send a message to Bob

• Queries for Bob's public key from Facebook's server

• Encrypts message and send it to Facebook

• Facebook then forwards the message to Bob


• Both Alice and Bob are using encrypted and authenticated channels 
to Facebook

6
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Facebook's Unique Messenger 
Problem: Abuse
• Much of Facebook's biggest problem is dealing with abuse...

• What if either Alice or Bob is a stalker, an a-hole, or otherwise problematic?

• Aside: A huge amount of abuse is explicitly gender based, so I'm going to use "Alex" as the 

abuser and "Bailey" as the victim through the rest of this example


• Facebook would expect the other side to complain

• And then perhaps Facebook would kick off the perpetrator for violating Facebook's 

Terms of Service


• But fake abuse complaints are also a problem

• So can't just take them on face value


• And abusers might also want to release info publicly

• Want sender to be able to deny to the public but not to Facebook

7
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Facebook's Problem 
Quantified
• Unless Bailey forwards the unencrypted message to 

Facebook

• Facebook must not be able to see the contents of the message


• If Bailey does forward the unencrypted message to 
Facebook


• Facebook must ensure that the message is what Alex sent to Bailey


• Nobody but Facebook should be able to verify this: 
No public signatures!


• Critical to prevent abusive release of messages to the public being verifiable
8
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The Protocol 
In Action

9

Alex Bailey

What Is Bailey's Public  
Key?
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Aside: Key Transparency...

• Both Alex and Bailey are trusting Facebook's honesty...

• What if Facebook gave Alex a different key for Bailey?  How would he know?


• Facebook messenger has a nearly hidden option which allows 
Alex to see Bailey's key

• If they ever get together, they can manually verify that Facebook was honest


• The mantra of central key servers: Trust but Verify

• The simple option is enough to force honesty, as each attempt to lie has some 

probability of being caught


• This is the biggest weakness of Apple iMessage:

• iMessage has (fairly) good cryptography but there is no way to verify Apple's honesty

10
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The Protocol 
In Action
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Alex Bailey

{message=E(Kpub_b, 
  M={"Hey Bailey I'm going to  
     say something abusive",  
     krand}),
 mac=HMAC(krand, M),
 to=Bailey}

{message=E(Kpub_b, 
  M={"Hey Bailey I'm going to  
     say something abusive",  
     krand}),
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
                 to, time})}
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Some Notes

• Facebook can not read the message or even verify Alex's 
HMAC


• As the key for the HMAC is in the message itself


• Only Facebook knows their HMAC key

• And its the only information Facebook needs to retain in this protocol: 

Everything else can be discarded


• Bailey upon receipt checks that Alex's HMAC is correct

• Otherwise Bailey's messenger silently rejects the message

• Forces Alex's messenger to be honest about the HMAC, even thought Facebook 

never verified it
12
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Now To 
Report Abuse

13

Alex Bailey

{Abuse{ 
  M={"Hey Bailey I'm going to  
     say something abusive",  
     krand}},
 mac=HMAC(krand, M),
 to=Bailey,
 from=Alex,
 time=now,
 fbmac=HMAC(Kfb,{mac, from,
                 to, time})}
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Facebook's Verification

• First verify that Bailey correctly reported the message sent

• Verify fbmac=HMAC(Kfb,{mac,from,to,time}) 
• Only Facebook can do this verification since they keep Kfb secret


• This enables Facebook to confirm that this is the message that it relayed from Alex to 
Bailey


• Then verify that Bailey didn't tamper with the message

• Verify mac=HMAC(krand,{M, krand})


• Now Facebook knows this was sent from Alex to Bailey and can 
act accordingly

• But Bailey can't prove that Alex sent this message to anyone other than Facebook

• And Bailey can't tamper with the message because the HMAC is also a hash

14
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Random Number 
Generators
• The Random Number Generator is the heart of cryptography

• It gets used all the time

• "Select a random a..." in your Diffie/Hellman key exchange

• "Create a random k..." for the session key

• "Create a random k..." for the HMAC key in the previous protocol


• But true random numbers are very hard to get

• Especially in large amounts


• Result is "gather entropy and use a pseudo random number 
generator"

15
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TRUE Random Numbers

• True random numbers generally require a physical process

• Common circuit is an unusable ring oscillator built into the CPU

• It is then sampled at a low rate to generate true random bits which are then fed into a pRNG


• Other common sources are human  
activity measured at very fine time scales

• Keystroke timing, mouse movements, etc

• "Wiggle the mouse to generate entropy for a key"


• Network/disk activity which is often human driven


• More exotic ones are possible:

• Cloudflare has a wall of lava lamps that are recorded 

by a HD video camera which views the lamps through a  
rotating prism

16



Computer Science 161 Fall 2016 Popa and Weaver

Combining Entropy

• The general procedure is to combine various sources of 
entropy


• Usually using a hash function


• The goal is to be able to take multiple crappy sources of 
entropy


• Measured in how many bits: 
A single flip of a coin is 1 bit of entropy


• And combine into a value where the entropy is the minimum of the sum of all 
entropy sources (maxed out by the # of bits in the hash function itself)

17



Computer Science 161 Fall 2016 Popa and Weaver

Pseudo Random Number Generators 
(aka Deterministic Random Bit Generators)
• Unfortunately one needs a lot of random numbers in cryptography

• More than one can generally get by just using the physical entropy source


• Enter the pRNG or DRBG

• If one knows the state it is entirely predictable

• If one doesn't know the state it should be indistinguishable from a random string


• Three operations

• Instantiate: (aka Seed) Set the internal state based on the real entropy sources

• Reseed: Update the internal state based on both the previous state and additional 

entropy

• Generate: Generate a series of random bits based on the internal state

• Generate can also optionally add in additional entropy

18
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Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state

• It is this predictability which is why its called "pseudo"


• If the attacker does not know the internal state

• The attacker should not be able to distinguish a truly random string from one generated by the 

pRNG


• It should also be rollback-resistant

• If the attacker finds out the state at time T, they should not be able to determine what the state 

was at T-1

• More precisely, if presented with two random strings, one truly random and one generated by 

the pRNG at time T-1, the attacker should not be able to distinguish between the two

• This is essential:

• A common motif:  Generate a random session key, then do something else that involves some "random" 

values but which an attacker might see
19
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Probably the best pRNG/DRBG: 
HMAC_DRBG
• Generally believed to be the best

• Breaking it requires either breaking the particular hash function 

or breaking the assumption that HMAC is distinguishable from random


• Two internal state registers, V and K

• Each the same size as the hash function's output


• V is used as (part of) the data input into HMAC, while K is the 
key


• If you can break this pRNG you can either break the underlying 
hash function or break a significant assumption about how 
HMAC works

20
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HMAC_DRBG 
Generate
• The basic generation function

• Remarks:

• It requires one HMAC call per blocksize-bits of state

• Then two more HMAC calls to update the internal 

state


• Backtrack resistance:

• If you can learn old K from new K and V: 

You've reversed the hash function!


• Prediction resistance:

• If you can distinguish new K from random when you 

don't know old K: 
You've distinguished HMAC from a random function

21

function hmac_drbg_generate (state, n) { 
  tmp = "" 
  while(len(tmp) < N){ 
     state.v = hmac(state.k,state.v) 
     tmp = tmp || state.v 
  } 
  // Update state w no input 
  state.k = hmac(state.k, state.v || 0x00) 
  state.v = hmac(state.k, state.v) 
  // Return the first N bits of tmp 
  return tmp[0:N] 
} 
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HMAC_DRBG 
Update
• Used instead of the "no-input 

update" when you have additional 
entropy on the generate call


• Used standalone for both 
instantiate (state.k = state.v =  0) 
and reseed


• Designed so that even if the 
attacker controls the input but 
doesn't know k:

• The attacker should not be able to predict 

the new k 
22

function hmac_drbg_update (state, input) { 
  state.k = hmac(state.k, state.v || 0x00 
                          || input) 
  state.v = hmac(state.k, state.v) 
  state.k = hmac(state.k, state.v || 0x01 
                          || input) 
  state.v = hmac(state.k, state.v) 
} 
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Now Onto The 
Craptography...
• Snake Oil

• Unusable systems

• Low entropy RNGs

• Sabotaged RNGs

• Sabotaged "Magic Numbers"

23
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Snake Oil Cryptography

• "Snake Oil" refers to 19th century 
fraudulent "cures"


• Promises to cure practically every ailment

• Sold because there was no regulation and  

no way for the buyers to know


• The security field is practically full of Snake Oil Security 
and Snake Oil Cryptography


• https://www.schneier.com/crypto-gram/archives/
1999/0215.html#snakeoil

24
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Anti-Snake Oil: 
NSA's CNSA cryptographic suite
• Successor to "Suite B"

• Unclassified algorithms approved for Top Secret//Sensitive Compartmented Information

• https://www.iad.gov/iad/programs/iad-initiatives/cnsa-suite.cfm


• Symmetric key, AES: 256b keys

• Hashing, SHA-384

• RSA/Diffie Helman: >= 3072b keys

• ECDHE/ECDSA: 384b keys over curve P-384


• In an ideal world, I'd only use those parameters, 

• But a lot of "strong" commercial is 128b AES, SHA-256, 2048b RSA/DH, 256b elliptic 

curves, plus the DJB curves and cyphers (ChaCha20)

• NSA has a requirement where a Top Secret communication captured today should not 

be decryptable by an adversary 40 years from now!
25
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Snake Oil Warning 
Signs...
• Amazingly long key lengths

• The NSA is super paranoid, and even they don't use >256b keys for symmetric key or >4096b for 

RSA/DH public key

• So if a system claims super long keys, be suspicious


• New algorithms and crazy protocols

• There is no reason to use a novel block cipher, hash, public key algorithm, or protocol

• Even a "post quantum" public key algorithm should not be used alone: 

Combine it with a conventional public key algorithm


• Anyone who roles their own is asking for trouble!

• EG, Telegram

• "It's like someone who had never seen cake but heard it described tried to bake one.  

With thumbtacks and iron filings."  Matthew D Green

• "Exactly! GLaDOS-cake encryption.  

Odd ingredients; strange recipe; probably not tasty; may explode oven. :)" Alyssa Rowan
26
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Snake Oil Warning

Signs...
• "One Time Pads"

• One time pads are secure, if you actually have a true one time pad

• But almost all the snake oil advertising it as a "one time pad" isn't!

• Instead, they are invariably some wacky stream cypher


• Gobbledygook, new math, and "chaos"

• Kinda obvious, but such things are never a good sign


• Rigged "cracking contests"

• Usually "decrypt this message" with no context and no structure

• Almost invariably a single or a few unknown plaintexts with nothing else

• Again, Telegram, I'm looking at you here!

27
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Unusability: 
No Public Keys
• The APCO Project 25 radio protocol

• Supports encryption on each traffic group

• But each traffic group uses a single shared key


• All fine and good if you set everything up at once...

• You just load the same key into all the radios

• But this totally fails in practice: what happens when you need to coordinate with 

somebody else who doesn't have the same keys?


• Made worse by bad user interface and users who think 
rekeying frequently is a good idea

• If your crypto is good, you shouldn't need to change your crypto keys


• "Why (Special Agent) Johnny (Still) Can't Encrypt

• http://www.crypto.com/blog/p25

28
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Unusability: 
PGP
• I hate Pretty Good Privacy

• But not because of the cryptography...


• The PGP cryptography is decent...

• Except it lacks "Forward Secrecy":  

If I can get someone's private key I can decrypt all their old messages


• The metadata is awful...

• By default, PGP says who every message is from and to

• It makes it much faster to decrypt


• It is hard to hide metadata well, but its easy to do things better than what PGP does


• It is never transparent

• Even with a "good" client like GPG-tools on the Mac

• And I don't have a client on my cellphone

29
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Unusability: 
How do you find someone's PGP key?
• Go to their personal website?

• Check their personal email?

• Ask them to mail it to you

• In an unencrypted channel?


• Check on the MIT keyserver?

• And get the old key that was mistakenly uploaded and can never be removed?

30
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Unusable: 
openssl libcrypto and libssl
• OpenSSL is a nightmare...

• A gazillion different little functions needed to do 

anything


• So much of a nightmare that I'm not 
going to bother learning it to teach you 
how bad it is

• This is why we didn't give you pycrypto raw, but 

instead provided a wrapper in the project


• But just to give you an idea: 
The command line OpenSSL utility 
options:

31
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Some Protocols 
Are Especially Vulnerable to Reuse
• El-Gamal, DSA, and ECDSA algorithms 

very vulnerable to value reuse

• Most famous is actually Sony PS3: 

It contained a special key LV0 used to decrypt the 
firmware


• The algorithms all use a random value k

• If you ever repeat k, or even use a predictable k, you are 

sunk...


• Sony signed in multiple places with the 
same k

• Enabled determining all their private keys!  OOPS

32

From XKCD



Computer Science 161 Fall 2016 Popa and Weaver

What Happens When The Random Numbers 
Goes Wrong...
• Insufficient Entropy:

• Random number generator is seeded without enough entropy


• Debian OpenSSL CVE-2008-0166

• In "cleaning up" OpenSSL (Debian 'bug' #363516), the author 'fixed' 

how OpenSSL seeds random numbers

• Because the code, as written, caused Purify and Valgrind to complain about 

reading uninitialized memory

• Unfortunate cleanup reduced the pRNG's seed to be just the process 

ID

• So the pRNG would only start at one of ~30,000 starting points


• This made it easy to find private keys

• Simply set to each possible starting point and generate a few private 

keys

• See if you then find the corresponding public keys anywhere on the 

Internet
33

http://blog.dieweltistgarnichtso.net/Caprica,-2-years-ago
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And Now Lets 
Add Some RNG Sabotage...
• The Dual_EC_DRBG

• A pRNG pushed by the NSA behind the scenes based on Elliptic Curves


• It relies on two parameters, P and Q on an elliptic curve

• The person who generates P and selects Q=eP can predict the random number 

generator, regardless of the internal state


• It also sucked!

• It was horribly slow and even had subtle biases that shouldn't exist in a pRNG: 

You could distinguish the upper bits from random!


• Now this was spotted fairly early on...

• Why should anyone use such a horrible random number generator?

34
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Well, anyone not paid that is...

• RSA Data Security accepted 30 pieces of silver $10M to 
implement Dual_EC in their RSA BSAFE library


• And silently make it the default pRNG


• Using RSA's support, it became a NIST standard

• And inserted into other products...


• And then the Snowden revelations

• The initial discussion of this sabotage in the NY Times just vaguely referred to 

a Crypto talk given by Microsoft people...

• That everybody quickly realized referred to Dual_EC

35
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But this is insanely powerful...

• It isn't just forward prediction but being able to run the 
generator backwards!


• In TLS (HTTPS) and Virtual Private Networks you have a 
motif of:


• Generate a random session key

• Generate some other random data that's public visible

• EG, the IV in the encrypted channel


• If you can run the random number generator backwards, 
you can find the session key

36
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It Got Worse: 
Sabotaging Juniper
• Juniper also used Dual_EC in their Virtual Private Networks

• "But we did it safely, we used a different Q"


• Sometime later, someone else noticed this...

• "Hmm, P and Q are the keys to the backdoor... 

Lets just hack Juniper and rekey the lock!"

• And whoever put in the first Dual_EC then went "Oh crap, we got locked out but we can't do anything about it!"


• Sometime later, someone else goes...

• "Hey, lets add an ssh backdoor"


• Sometime later, Juniper goes

• "Whoops, someone added an ssh backdoor, lets see what else got F'ed with, oh, this # in the pRNG"


• And then everyone else went

• "Ohh, patch for a backdoor.  Lets see what got fixed.  Oh, these look like Dual_EC parameters..."

37
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Sabotaging "Magic Numbers" 
In General
• Many cryptographic implementations depend on "magic" 

numbers

• Parameters of an Elliptic curve

• Magic points like P and Q

• Particular prime p for Diffie/Hellman

• The content of S-boxes in block cyphers


• Good systems should cleanly describe how they are 
generated

• In some sound manner (e.g. AES's S-boxes)

• In some "random" manner defined by a pRNG with a specific seed

38
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Because Otherwise You 
Have Trouble...
• Not only Dual-EC's P and Q

• Recent work: 1024b Diffie/Hellman moderately impractical...

• But you can create a sabotaged prime that is 1/1,000,000 the work to crack!


• It can cast doubt even when a design is solid:

• The DES standard developed by IBM with input from the NSA

• Everyone was suspicious about the NSA tampering with the S-boxes...

• They did: The NSA made them stronger against an attack they knew but the public didn't

• The NSA-defined elliptic curves P-256 and P-384

• I trust them because they are in Suite-B/CNSA so the NSA uses them for TS 

communication: 
A backdoor here would be absolutely unacceptable

39
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Shifting Gears:

Network Security
• Networking (CS168)

• Lets take this unreliable communication mechanism and make something useful out of it


• Network Security

• Lets take this unreliable and insecure communication mechanism and make something useful 

and secure out of it

• It unfortunately means networking becomes a prerequisite for security...


• Generally takes two forms

• Hacks that attempt to prevent deficiencies

• Using encrypted protocols to make the layers underneath irrelevant


• My plan: Incremental concepts

• I'm going to start at the "bottom" and work up, discussing functionality and security problems 

together
40
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The OSI 7 Layer Network Stack

• Physical and Data Link:

• Ethernet and Wireless Ethernet

• DHCP and ARP


• Network Layer:

• IP

• DNS


• Transport Layer:

• TCP and UDP

• TLS

• Firewalls


• Application Layer:

• Network Intrusion Detection

• Leads into Web Security

41
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