
Computer Science 161 Fall 2016 Popa and Weaver

Lecture #4: 
OS Security Concepts

1

Computer Science 161 Fall 2016 Popa and Weaver

Administrivia

• Project 1 is out now

• Start now: Don’t wait for the last minute

2

Computer Science 161 Fall 2016 Popa and Weaver

Access Control

• Some resources (files, web pages, …) are
sensitive.

• How do we limit who can access them?

• This is called the access control problem

• A foundational problem when building a

secure system:

• We must be able to specify who is allowed and who

is forbidden from accessing something

• We must be able to enforce our specification

3

Computer Science 161 Fall 2016 Popa and Weaver

Access Control Fundamentals

• Subject = a user, process, … 
(something who is accessing resources)

• Object = a file, device, web page, … 
(a resource that can be accessed)

• Policy = the restrictions we’ll enforce

• Mechanism = what enforces the policy

• access(S, O) = true 

if subject S is allowed to access object O

• access(S, O) = false 

if subject S is forbidden to access object O

• Defaults matter:

• If unspecified, is the default “true” (default-allow) or “false” (default-

deny)
4

Knows Secret #
123456

Computer Science 161 Fall 2016 Popa and Weaver

Example

• access(Alice, Alice’s Facebook wall) = true

• access(Alice, Bob’s Facebook wall) = true

• access(Alice, Charlie’s Facebook wall) = false

• access(Friend(Alice), Alice’s Facebook wall) = true

• Reasoning in terms of “groups” can often make the logic easier 

• access(nweaver, /home/cs161/gradebook) = true

• access(Alice, /home/cs161/gradebook) = false

• alert(Alice, attempt to access /home/cs161/gradebook) = hell yah

5

Computer Science 161 Fall 2016 Popa and Weaver

Access Control Matrix

• access(S, O) = true 
if subject S is allowed to access object O

6

Alice’s wall Bob’s wall Charlie’s wall …
Alice true true false
Bob false true false
 …

Computer Science 161 Fall 2016 Popa and Weaver

Permissions

• We can have finer-grained permissions, 
e.g., read, write, execute.

• access(daw, /cs161/grades/alice) = {read, write} 
access(alice, /cs161/grades/alice) = {read} 
access(bob, /cs161/grades/alice) = {}

7

/cs161/grades/alice
nweaver read, write
alice read
bob -

Computer Science 161 Fall 2016 Popa and Weaver

Access Control

• Authorization: who should be able to perform which actions

• Nick, Reluca, and the TAs are the only ones authorized to access the grade

database

• Authentication: verifying who is requesting the action

• Yes, this is Nick accessing the grade database

• Audit: a log of all actions, attributed to a particular principal

• Nick gave John Smith an A+

• Accountability: hold people legally responsible for actions
they take

• John Smith hijacked Nick’s credentials and now his grade is an F

8

Computer Science 161 Fall 2016 Popa and Weaver

Establishing Identity

• In order to enforce access control the
system needs to know who is whom…

• “Something you know”

• Almost certainly a password

• “Something you have”

• Security token, cellphone, etc

• “Something you are”

• Fingerprint, iris scan, etc

9

My Luggage
Combination is

#12345

Computer Science 161 Fall 2016 Popa and Weaver

Two Factor 
Verification
• Assumption: An attacker can easily grab one factor

• Guess/determine your password

• Steal your keys

• Clone a fingerprint (“Gummy fingers”)

• But it is much harder for an attacker to grab two factors

• But they have to be independent: 

If both “factors” are something you know, its not two-factor!

• Two-factor can often serve to detect attacks

• EG, SMS notification on login

• Good 2-factor prevents, not just mitigates attacks

• FiDO U2F: 

The second factor is bound to the site: 
A phishing link can not use the second factor

• If you exclusively use Crome as your web browser, buy yourself a Fido U2F token!
10

Computer Science 161 Fall 2016 Popa and Weaver

Recovery Mechanisms

• Unfortunately people aren't perfect

• They forget passwords, lose authentication tokens, and even suffer accidental amputation...

• At scale it gets worse:

• If you have 10M users, you're going to have people losing passwords all the time

• So recovery proves to be the weakness:

• Password recovery channels: email, SMS, etc

• But what happens with a lost phone?

• "Knowledge Based Authentication": stuff about your finances etc... That the black market knows

• Practical upshot:

• Lock down the keystone recovery mechanisms: 

Make sure your phone requires ID in person to change 
Make sure your master email is well secured

11

Computer Science 161 Fall 2016 Popa and Weaver

Web security

• Let’s talk about how this applies to web security…

12

Computer Science 161 Fall 2016 Popa and Weaver

Structure of a web application

13

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

How should we 
implement access 
control policy?

Computer Science 161 Fall 2016 Popa and Weaver

Option 1: Integrated Access Control

14

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

access
check

access
check

access
check

Record username. 
Check policy at each 
place in code that 
accesses data.

record 
username

Computer Science 161 Fall 2016 Popa and Weaver

Option 2: Centralized Enforcement

15

(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

record 
username

access
check

Record username. 
Database checks 
policy for each 
data access.

Computer Science 161 Fall 2016 Popa and Weaver

Analysis

• Centralized enforcement might be less prone to error

• All accesses are vectored through a central chokepoint, which checks access

• If you have to add checks to each piece of code that accesses data, it’s easy

to forget a check (and app will work fine in normal usage, until someone tries
to access something they shouldn’t)

• Integrated checks might be more flexible

• But all it takes is missing ONE check to screw up!

• When in doubt, chose the more reliable option

16

Computer Science 161 Fall 2016 Popa and Weaver

Access Control Groups

• Its often a pain to keep track of everyone individually

• So instead lets create groups of people

• EG, "cs161-instructors", “cs161-students"

• This acts as a convenient shorthand

• Now if we define access for a group and if we correctly identify who is in the

group

• But groups also created of necessity for Unix access
control

17

Computer Science 161 Fall 2016 Popa and Weaver

Unix/POSIX File Access Control: 
User/Group/All
• Unix and derivatives is old

• Development concepts date back to the late 1970s

• Legacy often creates security problems and other issues

• In the old days, bits were expensive

• Hard drives were measured in megabytes rather than terabytes

• Idea: each file entry has a small set of permission bits:

• User/Group/All: Read/Write/Execute

• Execute for programs means its runnable

• Execute for folders means you can access files within it

• But you need read to see files!

• SUID/SETGID: When executed, run as the permissions of the file owner or the specified
group

18

Computer Science 161 Fall 2016 Popa and Weaver

Windows File Access Control: 
ACLs
• Multi-user Windows is considerably newer with Windows-NT, 1993

• By now, hard drives were starting to be measured in gigabytes

• Microsoft’s legacy problems are in a different area

• Microsoft uses Access Control Lists

• Which can be arbitrarily long

• Each Access Control Entry (ACE) describes a user or group and the
permissions allowed or denied

• Also includes the notion of an “audit” permission noting that items need to be logged

• Uses the same mechanism for registry entries as well

• Apple’s and Linux’s file system also supports ACLs

• Although naturally its a pain to use because the legacy stuff is still the common default for thinking

about things
19

Computer Science 161 Fall 2016 Popa and Weaver

The "Superuser"

• In normal use, the user must not make changes that affect
the system or other users

• But sometimes you have to, well, fix things

• Enter the “Superuser”

• An account with extra privileges

• Unix: “root”

• Windows: “Administrator”

20

Computer Science 161 Fall 2016 Popa and Weaver

Users and SUID programs

• A SUID program runs as the file’s owner, not the invoking user

• A very important property as it means it runs with the privileges of the file owner

• Many important things can only be done as the superuser
“suid root”

• Accept connections on low network ports

• Become any other user

• An important one being “nobody”: the user with no additional permissions

• A vulnerability in a suid root program can generally
compromise the entire machine

21

Computer Science 161 Fall 2016 Popa and Weaver

Complete mediation

• The principle: complete mediation

• Ensure that all access to data is

mediated by something that checks
access control policy.

• In other words: the access checks can’t be
bypassed

• If you don’t have complete mediation,
your access control will fail!

22

Computer Science 161 Fall 2016 Popa and Weaver

Reference monitor

• A reference monitor is responsible for mediating all access to
data

• Subject cannot access data directly; operations must go
through the reference monitor, which checks whether they’re
OK

23

subject reference 
monitor object

Computer Science 161 Fall 2016 Popa and Weaver

Criteria for a reference monitor

• Ideally, a reference monitor should be:

• Unbypassable: all accesses go through the reference monitor

• Otherwise an attacker will go around

• Tamper-resistant: attacker cannot subvert or take control of
the reference monitor (e.g., no code injection)

• Otherwise an attacker will corrupt the reference monitor

• Verifiable: reference monitor should be simple enough that
it’s unlikely to have bugs

• Only small things can be validated reliably
24

Computer Science 161 Fall 2016 Popa and Weaver

One Such Reference Monitor: 
The processor’s TLB
• Remember 61c: the Translation Lookaside Buffer

• When a program wishes to access memory:

• If an entry exists and the operation is valid, adjust the address and allow

• If no entry exists or the access type is invalid, trigger an interrupt

• When a program wishes to modify a TLB entry:

• If CPU not in “kernel” mode, no updates are allowed

• CPU can only enter “kernel” mode by an interrupt

25

VPN offset

V R W D tag PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

Computer Science 161 Fall 2016 Popa and Weaver

Security Analysis and the 
TLB?
• Bypassable?

• No. All program memory references must go through the TLB

• Tamper-Resistant?*

• Yes. A program can not change any entries in the TLB: 

only kernel code can

• Verifiable?*

• Yes. The TLB is relatively small hardware and is intensely verified

• Hardware bugs are very costly so hardware designers are very comprehensive in

testing systems

26

Computer Science 161 Fall 2016 Popa and Weaver

The Trusted Computing Base

• More broadly, the trusted computing base (TCB) is the
subset of the system that has to be correct, for some
security goal to be achieved

• Example: the TCB for enforcing file access permissions includes the OS
kernel and filesystem drivers

• Ideally, TCBs should be unbypassable, tamper-resistant,
and verifiable

• Which implies that TCBs are best when they are small: 
the more code -> the more you have to trust -> the more bugs

27

Computer Science 161 Fall 2016 Popa and Weaver

Ensuring Complete Mediation

• To secure access to some capability/resource, construct a reference
monitor

• Single point through which all access must occur

• E.g.: a network firewall

• Desired properties:

• Un-bypassable (“complete mediation”)

• Tamper-proof (is itself secure)

• Verifiable (correct)

• (Note, just restatements of what we want for TCBs)

• One subtle form of reference monitor flaw concerns race conditions
…

28

Computer Science 161 Fall 2016 Popa and Weaver

So about that *

• The Trusted Base for correct memory access is not just
the TLB

• Thus the trusted base is considerably larger (and therefore considerably
weaker)

• The TLB relies on two other things:

• The CPU must not go into kernel mode except when an interrupt occurs

• This is probably a reasonable assumption…

• The OS kernel must not allow any non-kernel code to execute in the kernel

or allow it to change the state of the kernel’s memory mappings

• This is a much harder assumption

29

Computer Science 161 Fall 2016 Popa and Weaver

TCBs in Practice: 
Apple iPhones
• The iPhone actually has multiple TCBs for different

purposes:

• The fingerprint sensor

• The “Secure Enclave” cryptographic engine

• The more general OS

• Each TCB trades-off the complexity of what it protects vs
the security of what it protects

• Its far easier to build a TCB that just does a little thing

30

Computer Science 161 Fall 2016 Popa and Weaver

The Fingerprint Sensor

• Desired property: only the untampered fingerprint reader
communicates to the secure enclave

• Don’t allow someone to replace it with one which can replay a fingerprint

• The home button’s fingerprint sensor has very limited
functionality

• When the phone is created, it establishes a secured channel to the “Secure
Enclave”

• A new fingerprint reader can be replaced, but only by Apple as it requires
telling the device to accept a new reader using a key only Apple possess

31

Computer Science 161 Fall 2016 Popa and Weaver

The Secure Enclave

• A separate processor running in the chip

• Has exclusive access to a random device key created during manufacturing

• Handles all the cryptography and authentication

• A very limited window for communication with the main processor

• The fingerprint reader is forwarded from the main processor

• But that communication is encrypted with a key the main processor doesn’t know

• Goal is very strong but very limited:

• Protect the encryption keys used to store data so that w/o the password the

data is inaccessible

• Authenticate for payment systems (Apple Pay)

32

Computer Science 161 Fall 2016 Popa and Weaver

The General iOS Kernel

• The “kernel” on the phone is the primary operating system

• It does not have access to the cryptography engine, but can only make

requests to enable decryption of memory

• But it does have complete control over the rest of the phone

• If the phone is locked:

• Kernel doesn’t have access to encrypted data

• If the phone is unlocked:

• Kernel can read/write all the encrypted data even though it doesn’t have the

key
• But can’t process payment requests

33

Computer Science 161 Fall 2016 Popa and Weaver

Optional Reading (For Now): 
Apple iOS security guide
• Linked to on the course webpage…

• For now, just look through the part on TouchID and Secure

Enclave

• But by the end of the course, the entire document will

become required reading

• Its a great test of your understanding of security concepts: 

Why does Apple do what they do?  
What would you do differently?  
What tradeoffs are involved?

34

Computer Science 161 Fall 2016 Popa and Weaver

Robustness

• Security bugs are a fact of life

• How can we use access control to improve the security of
software, so security bugs are less likely to be
catastrophic?

35

Computer Science 161 Fall 2016 Popa and Weaver

Privilege separation

• How can we improve the security of software, so security
bugs are less likely to be catastrophic?

• Answer: privilege separation. 
Architect the software so it has a separate, small TCB.

– Then any bugs outside the TCB will not be catastrophic

36

Computer Science 161 Fall 2016 Popa and Weaver

Touchstones for Least Privilege

• When assessing the security of a system’s design, identify the Trusted
Computing Base (TCB).

• What components does security rely upon?

• Security requires that the TCB:

• Is correct

• Is complete (can’t be bypassed)

• Is itself secure (can’t be tampered with)

• Best way to be assured of correctness and its security?

• KISS = Keep It Simple, Stupid!

• Generally, Simple = Small

• One powerful design approach: privilege separation

• Isolate privileged operations to as small a component as possible

• (See lecture notes for more discussion)

37

Computer Science 161 Fall 2016 Popa and Weaver

Web browser

38

Web Browser

Web Site

Browser
Kernel

Rendering
Engine

“Drive-by malware”: malicious web page
exploits a browser bug to read/write local
files or infect them with a virus

Trusted
Computing
Base

Computer Science 161 Fall 2016 Popa and Weaver

The Chrome browser

39

Goal: prevent “drive-by 
malware”, where a malicious 
web page exploits a browser 
bug to read/write local files 
or infect them with a virus

TCB (for this property)

Computer Science 161 Fall 2016 Popa and Weaver

The Chrome browser

40

700K lines of code

1000K lines of code

70% of vulnerabilities are in the
rendering engine.

Example: PNG, WMF, GDI+
rendering vulnerabilities in
Windows OS

Computer Science 161 Fall 2016 Popa and Weaver

Constructing Sandboxes

• Need to provide a constrained communication mechanism

• A clean API to separate the sandboxed elements

• Need a mechanism to give up privileges

• So that the sandboxed component can not do things outside the sandbox

• In the end it is really more of a litterbox

• But an attacker needs to both compromise the program in the sandbox and

escape from the sandbox to impact the program

41

Computer Science 161 Fall 2016 Popa and Weaver

Time of Check To Time of Use (TOCTTOU)

• A very common class of bugs in a reference monitor

• Check to see if an action is allowed

• Perform that action

• But somewhere in between the check and use, conditions
are changed

• So it would no longer be allowed

• Most attacks are race conditions:

• Attacker needs to win the “race” to change conditions after the check but

before the action happens

42

Computer Science 161 Fall 2016 Popa and Weaver

Exploiting TOCTTOU: 
Race Conditions
• Lets take a simple SUID root

program:

• Check if user should be allowed to

write to a particular file

• Open the file for writing

• But what if the file is a link and
the attacker changes the file?

• Can use this to overwrite anything… 
such as the /etc/sudoers file

43

if (!access_ok(file)
 abort();
open(file);
write(file);

Computer Science 161 Fall 2016 Popa and Weaver

Preventing TOCTTOU: 
Atomicity
• Robustly preventing TOCTTOU requires some form of atomicity

• Either a way of locking things so that changes can’t happen

• OR an exception mechanism that does the check atomically

• EG, a SUID program temporarily changes who its running to using seteuid and then calling

open directly

• Otherwise, you always have these problems

• A consequence: the Unix access() function is completely

broken

• Its intent: Can the process calling the current SUID program also access the file?

• Its result: Using access it is impossible to provably prevent TOCTTOU errors!

44

