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Lecture #4: 
OS Security Concepts
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Administrivia

• Project 1 is out now

• Start now: Don’t wait for the last minute
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Access Control

• Some resources (files, web pages, …) are 
sensitive.


• How do we limit who can access them?

• This is called the access control problem

• A foundational problem when building a 

secure system:

• We must be able to specify who is allowed and who 

is forbidden from accessing something

• We must be able to enforce our specification
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Access Control Fundamentals

• Subject = a user, process, … 
(something who is accessing resources)


• Object = a file, device, web page, … 
(a resource that can be accessed)


• Policy = the restrictions we’ll enforce

• Mechanism = what enforces the policy

• access(S, O) = true 

if subject S is allowed to access object O

• access(S, O) = false 

if subject S is forbidden to access object O

• Defaults matter:

• If unspecified, is the default “true” (default-allow) or “false” (default-

deny)
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Example

• access(Alice, Alice’s Facebook wall) = true

• access(Alice, Bob’s Facebook wall) = true

• access(Alice, Charlie’s Facebook wall) = false

• access(Friend(Alice), Alice’s Facebook wall) = true

• Reasoning in terms of “groups” can often make the logic easier 

• access(nweaver, /home/cs161/gradebook) = true

• access(Alice, /home/cs161/gradebook) = false

• alert(Alice, attempt to access /home/cs161/gradebook) = hell yah
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Access Control Matrix

• access(S, O) = true 
if subject S is allowed to access object O
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Alice’s wall Bob’s wall Charlie’s wall …
Alice true true false
Bob false true false
 …
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Permissions

• We can have finer-grained permissions, 
e.g., read, write, execute.


• access(daw,  /cs161/grades/alice) = {read, write} 
access(alice, /cs161/grades/alice) = {read} 
access(bob,  /cs161/grades/alice) = {}
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/cs161/grades/alice
nweaver read, write
alice read
bob -
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Access Control

• Authorization: who should be able to perform which actions

• Nick, Reluca, and the TAs are the only ones authorized to access the grade 

database


• Authentication: verifying who is requesting the action

• Yes, this is Nick accessing the grade database


• Audit: a log of all actions, attributed to a particular principal

• Nick gave John Smith an A+


• Accountability: hold people legally responsible for actions 
they take

• John Smith hijacked Nick’s credentials and now his grade is an F
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Establishing Identity 

• In order to enforce access control the 
system needs to know who is whom…


• “Something you know”

• Almost certainly a password


• “Something you have”

• Security token, cellphone, etc


• “Something you are”

• Fingerprint, iris scan, etc
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Two Factor 
Verification
• Assumption: An attacker can easily grab one factor

• Guess/determine your password

• Steal your keys

• Clone a fingerprint (“Gummy fingers”)


• But it is much harder for an attacker to grab two factors

• But they have to be independent: 

If both “factors” are something you know, its not two-factor!


• Two-factor can often serve to detect attacks

• EG, SMS notification on login


• Good 2-factor prevents, not just mitigates attacks

• FiDO U2F: 

The second factor is bound to the site: 
A phishing link can not use the second factor


• If you exclusively use Crome as your web browser, buy yourself a Fido U2F token!
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Recovery Mechanisms

• Unfortunately people aren't perfect

• They forget passwords, lose authentication tokens, and even suffer accidental amputation...


• At scale it gets worse:

• If you have 10M users, you're going to have people losing passwords all the time


• So recovery proves to be the weakness:

• Password recovery channels: email, SMS, etc

• But what happens with a lost phone?


• "Knowledge Based Authentication": stuff about your finances etc... That the black market knows


• Practical upshot:

• Lock down the keystone recovery mechanisms: 

Make sure your phone requires ID in person to change 
Make sure your master email is well secured

11



Computer Science 161 Fall 2016 Popa and Weaver

Web security

• Let’s talk about how this applies to web security…
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Structure of a web application
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(code)

/login.php

(code)

/friends.php

(code)

/search.php

(code)

/viewwall.php
...

databasecontroller

How should we 
implement access 
control policy?



Computer Science 161 Fall 2016 Popa and Weaver

Option 1: Integrated Access Control
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(code)

/login.php

(code)
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(code)

/search.php

(code)
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...

databasecontroller

access 
check

access 
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Record username. 
Check policy at each 
place in code that 
accesses data.
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username
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Option 2: Centralized Enforcement
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(code)

/login.php

(code)

/friends.php
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/search.php
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/viewwall.php
...

databasecontroller
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username
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Record username. 
Database checks 
policy for each 
data access.
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Analysis

• Centralized enforcement might be less prone to error

• All accesses are vectored through a central chokepoint, which checks access

• If you have to add checks to each piece of code that accesses data, it’s easy 

to forget a check (and app will work fine in normal usage, until someone tries 
to access something they shouldn’t)


• Integrated checks might be more flexible

• But all it takes is missing ONE check to screw up!


• When in doubt, chose the more reliable option
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Access Control Groups

• Its often a pain to keep track of everyone individually

• So instead lets create groups of people


• EG, "cs161-instructors", “cs161-students"

• This acts as a convenient shorthand

• Now if we define access for a group and if we correctly identify who is in the 

group


• But groups also created of necessity for Unix access 
control
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Unix/POSIX File Access Control: 
User/Group/All
• Unix and derivatives is old

• Development concepts date back to the late 1970s

• Legacy often creates security problems and other issues


• In the old days, bits were expensive

• Hard drives were measured in megabytes rather than terabytes


• Idea: each file entry has a small set of permission bits:

• User/Group/All: Read/Write/Execute

• Execute for programs means its runnable

• Execute for folders means you can access files within it

• But you need read to see files!


• SUID/SETGID: When executed, run as the permissions of the file owner or the specified 
group
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Windows File Access Control: 
ACLs
• Multi-user Windows is considerably newer with Windows-NT, 1993

• By now, hard drives were starting to be measured in gigabytes

• Microsoft’s legacy problems are in a different area


• Microsoft uses Access Control Lists

• Which can be arbitrarily long


• Each Access Control Entry (ACE) describes a user or group and the 
permissions allowed or denied

• Also includes the notion of an “audit” permission noting that items need to be logged


• Uses the same mechanism for registry entries as well

• Apple’s and Linux’s file system also supports ACLs

• Although naturally its a pain to use because the legacy stuff is still the common default for thinking 

about things
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The "Superuser"

• In normal use, the user must not make changes that affect 
the system or other users


• But sometimes you have to, well, fix things


• Enter the “Superuser”

• An account with extra privileges


• Unix: “root”

• Windows: “Administrator”
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Users and SUID programs

• A SUID program runs as the file’s owner, not the invoking user

• A very important property as it means it runs with the privileges of the file owner


• Many important things can only be done as the superuser 
“suid root”


• Accept connections on low network ports

• Become any other user

• An important one being “nobody”: the user with no additional permissions


• A vulnerability in a suid root program can generally 
compromise the entire machine
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Complete mediation

• The principle: complete mediation

• Ensure that all access to data is 

mediated by something that checks 
access control policy.


• In other words: the access checks can’t be 
bypassed


• If you don’t have complete mediation, 
your access control will fail!

22



Computer Science 161 Fall 2016 Popa and Weaver

Reference monitor

• A reference monitor is responsible for mediating all access to 
data


• Subject cannot access data directly; operations must go 
through the reference monitor, which checks whether they’re 
OK

23

subject reference 
monitor object
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Criteria for a reference monitor

• Ideally, a reference monitor should be:

• Unbypassable: all accesses go through the reference monitor

• Otherwise an attacker will go around


• Tamper-resistant: attacker cannot subvert or take control of 
the reference monitor (e.g., no code injection)


• Otherwise an attacker will corrupt the reference monitor


• Verifiable: reference monitor should be simple enough that 
it’s unlikely to have bugs


• Only small things can be validated reliably
24
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One Such Reference Monitor: 
The processor’s TLB
• Remember 61c: the Translation Lookaside Buffer

• When a program wishes to access memory:

• If an entry exists and the operation is valid, adjust the address and allow

• If no entry exists or the access type is invalid, trigger an interrupt


• When a program wishes to modify a TLB entry:

• If CPU not in “kernel” mode, no updates are allowed

• CPU can only enter “kernel” mode by an interrupt

25

VPN   offset

V R W D    tag        PPN

physical address PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)
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Security Analysis and the 
TLB?
• Bypassable?

• No.  All program memory references must go through the TLB


• Tamper-Resistant?*

• Yes.  A program can not change any entries in the TLB: 

only kernel code can


• Verifiable?*

• Yes.  The TLB is relatively small hardware and is intensely verified

• Hardware bugs are very costly so hardware designers are very comprehensive in 

testing systems
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The Trusted Computing Base

• More broadly, the trusted computing base (TCB) is the 
subset of the system that has to be correct, for some 
security goal to be achieved


• Example: the TCB for enforcing file access permissions includes the OS 
kernel and filesystem drivers


• Ideally, TCBs should be unbypassable, tamper-resistant, 
and verifiable


• Which implies that TCBs are best when they are small: 
the more code -> the more you have to trust -> the more bugs
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Ensuring Complete Mediation

• To secure access to some capability/resource, construct a reference 
monitor


• Single point through which all access must occur

• E.g.: a network firewall


• Desired properties:

• Un-bypassable (“complete mediation”)

• Tamper-proof (is itself secure)

• Verifiable (correct)

• (Note, just restatements of what we want for TCBs)


• One subtle form of reference monitor flaw concerns race conditions 
…
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So about that *

• The Trusted Base for correct memory access is not just 
the TLB 

• Thus the trusted base is considerably larger (and therefore considerably 
weaker) 

• The TLB relies on two other things:

• The CPU must not go into kernel mode except when an interrupt occurs

• This is probably a reasonable assumption…

• The OS kernel must not allow any non-kernel code to execute in the kernel 

or allow it to change the state of the kernel’s memory mappings

• This is a much harder assumption
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TCBs in Practice: 
Apple iPhones
• The iPhone actually has multiple TCBs for different 

purposes:

• The fingerprint sensor

• The “Secure Enclave” cryptographic engine

• The more general OS


• Each TCB trades-off the complexity of what it protects vs 
the security of what it protects


• Its far easier to build a TCB that just does a little thing
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The Fingerprint Sensor

• Desired property: only the untampered fingerprint reader 
communicates to the secure enclave


• Don’t allow someone to replace it with one which can replay a fingerprint


• The home button’s fingerprint sensor has very limited 
functionality


• When the phone is created, it establishes a secured channel to the “Secure 
Enclave”


• A new fingerprint reader can be replaced, but only by Apple as it requires 
telling the device to accept a new reader using a key only Apple possess
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The Secure Enclave

• A separate processor running in the chip

• Has exclusive access to a random device key created during manufacturing


• Handles all the cryptography and authentication

• A very limited window for communication with the main processor

• The fingerprint reader is forwarded from the main processor

• But that communication is encrypted with a key the main processor doesn’t know


• Goal is very strong but very limited:

• Protect the encryption keys used to store data so that w/o the password the 

data is inaccessible

• Authenticate for payment systems (Apple Pay)
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The General iOS Kernel

• The “kernel” on the phone is the primary operating system

• It does not have access to the cryptography engine, but can only make 

requests to enable decryption of memory


• But it does have complete control over the rest of the phone

• If the phone is locked:

• Kernel doesn’t have access to encrypted data


• If the phone is unlocked:

• Kernel can read/write all the encrypted data even though it doesn’t have the 

key 
• But can’t process payment requests

33



Computer Science 161 Fall 2016 Popa and Weaver

Optional Reading (For Now): 
Apple iOS security guide
• Linked to on the course webpage…

• For now, just look through the part on TouchID and Secure 

Enclave

• But by the end of the course, the entire document will 

become required reading

• Its a great test of your understanding of security concepts: 

Why does Apple do what they do?   
What would you do differently?   
What tradeoffs are involved?
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Robustness

• Security bugs are a fact of life


• How can we use access control to improve the security of 
software, so security bugs are less likely to be 
catastrophic?
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Privilege separation

• How can we improve the security of software, so security 
bugs are less likely to be catastrophic?


• Answer: privilege separation. 
Architect the software so it has a separate, small TCB.


– Then any bugs outside the TCB will not be catastrophic
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Touchstones for Least Privilege

• When assessing the security of a system’s design, identify the Trusted 
Computing Base (TCB).

• What components does security rely upon?


• Security requires that the TCB:

• Is correct

• Is complete (can’t be bypassed)

• Is itself secure (can’t be tampered with)


• Best way to be assured of correctness and its security?

• KISS = Keep It Simple, Stupid!

• Generally, Simple = Small


• One powerful design approach: privilege separation

• Isolate privileged operations to as small a component as possible

• (See lecture notes for more discussion)
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Web browser

38

Web Browser

Web Site

Browser 
Kernel

Rendering 
Engine

“Drive-by malware”: malicious web page 
exploits a browser bug to read/write local 
files or infect them with a virus

Trusted  
Computing  
Base
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The Chrome browser

39

Goal: prevent “drive-by 
malware”, where a malicious 
web page exploits a browser 
bug to read/write local files 
or infect them with a virus

TCB (for this property)
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The Chrome browser

40

700K lines of code

1000K lines of code

70% of vulnerabilities are in the 
rendering engine.

Example: PNG, WMF, GDI+ 
rendering vulnerabilities in 
Windows OS
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Constructing Sandboxes

• Need to provide a constrained communication mechanism

• A clean API to separate the sandboxed elements


• Need a mechanism to give up privileges

• So that the sandboxed component can not do things outside the sandbox


• In the end it is really more of a litterbox

• But an attacker needs to both compromise the program in the sandbox and 

escape from the sandbox to impact the program
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Time of Check To Time of Use (TOCTTOU)

• A very common class of bugs in a reference monitor

• Check to see if an action is allowed

• Perform that action


• But somewhere in between the check and use, conditions 
are changed


• So it would no longer be allowed


• Most attacks are race conditions:

• Attacker needs to win the “race” to change conditions after the check but 

before the action happens
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Exploiting TOCTTOU: 
Race Conditions
• Lets take a simple SUID root 

program:

• Check if user should be allowed to 

write to a particular file

• Open the file for writing


• But what if the file is a link and 
the attacker changes the file?


• Can use this to overwrite anything… 
such as the /etc/sudoers file

43

if (!access_ok(file) 
  abort(); 
open(file); 
write(file);
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Preventing TOCTTOU: 
Atomicity
• Robustly preventing TOCTTOU requires some form of atomicity

• Either a way of locking things so that changes can’t happen

• OR an exception mechanism that does the check atomically

• EG, a SUID program temporarily changes who its running to using seteuid and then calling 

open directly


• Otherwise, you always have these problems

• A consequence: the Unix access() function is completely 

broken

• Its intent: Can the process calling the current SUID program also access the file?

• Its result: Using access it is impossible to provably prevent TOCTTOU errors!
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