CS161 Computer Security

Weaver and Popa

T

(and How To Break It) Nicholas C Weaver

Tor: The Onion Router Anonymous Websurfing

- Tor actually encompasses many different components
- The Tor network:

CS 161 Computer Security

- Provides a means for anonymous Internet connections with low(ish) latency by relaying connections through multiple Onion Router systems
- The Tor Browser bundle:
 - A copy of FireFox extended release with privacy optimizations, configured to only use the Tor network
- Tor Hidden Services:
 - Services only reachable though the Tor network
- Tor bridges with pluggable transports:
 - Systems to reach the Tor network using encapsulation to evade censorship

The Tor Threat Model:

Anonymity of content against local adversaries

- CS 161 Computer Security
 - The goal is to enable users to connect to other systems "anonymously" but with low latency
 - The remote system should have no way of knowing the IP address originating traffic
 - The local network should have no way of knowing the remote IP address the local user is contacting
 - Important what is excluded: The *global* adversary
 - Tor does not even attempt to counter someone who can see *all* network traffic

The High Level Approach: Onion Routing

CS 161 Computer Security

- The Tor network consists of thousands of independent Tor nodes, or "Onion Routers"
 - Each node has a distinct public key and communicates with other nodes over TLS connections
- A Tor circuit encrypts the data in a series of layers
 - Each hop away from the client removes a layer of encryption
 - Each hop towards the client adds a layer of encryption
- During circuit establishment, the client establishes a session key with the first hop...
 - And then with the second hop through the first hop

Tor Routing In Action

CS 161 Computer Security

Tor Routing In Action

CS 161 Computer Security

Creating the Circuit Layers...

CS 161 Computer Security

- The client starts out by using an authenticated DHE key exchange with the first node...
 - Creating a session key to talk to OR1
 - This first hop is commonly referred to as the "guard node"
- It then tells OR1 to extend this circuit to OR2
 - Creating a session key for the client to talk to OR2 that OR1 does not know
 - And OR2 doesn't know what the client is, just that it is somebody talking to OR1 requesting to extend the connection...
- It then tells OR2 to extend to OR3...
 - And OR1 won't know where the client is extending the circuit to, only OR2 will

Unwrapping the Onion

CS 161 Computer Security

- Now the client sends some data...
 - E(K_{or1},E(K_{or2},E(K_{or3}, Data)))
- OR1 decrypts it and passes on to OR2
 - E(K_{or2}, E(K_{or3}, Data))
- OR2 then passes it on...
- Generally go through at least 3 hops...
 - Why 3? So that OR1 can't call up OR2 and link everything trivially

Weaver and Por

The Tor Browser...

CS 161 Computer Security

- Surfing "anonymously" doesn't simply depend on hiding your connection...
- But also configuring the browser to make sure it resists tracking
 - No persistent cookies or other data stores
 - No deviations from other people running the same browser
- Anonymity only works in a crowd...
 - So it really tries to make it all the same
- But by default it makes it easy to say "this person is using Tor"

But You Are Relying On Honest Exit Nodes...

- CS 161 Computer Security
 - The exit node, where your traffic goes to the general Internet, is a man-in-themiddle...
 - Who can see and modify all nonencrypted traffic
 - The exit node also does the DNS lookups
 - Exit nodes have not always been honest...

Anonymity Invites Abuse... (Stolen from Penny Arcade)

CS 161 Computer Security

Ш

This Makes Using Tor Browser Painful...

And Also Makes Running Exit Nodes Painful...

CS 161 Computer Security

- If you want to receive abuse complaints...
 - Run a Tor Exit Node
- Assuming your ISP even allows it...
 - Since they don't like complaints either
- Serves as a large limit on Tor in practice:
 - Internal bandwidth is plentiful, but exit node bandwidth is restricted

One Example of Abuse: The Harvard Bomb Threat...

CS 161 Computer Security

- On December 16th, 2013, a Harvard student didn't want to take his final in "Politics of American Education"...
 - So he emailed a bomb threat using Guerrilla Mail
 - But he was "smart" and used Tor and Tor Browser to access Guerrilla Mail
- Proved easy to track
 - "Hmm, this bomb threat was sent through Tor..."
 - "So who was using Tor on the Harvard campus..." (look in Netflow logs..)
 - "So who is this person..." (look in authentication logs)
 - "Hey FBI agent, wanna go knock on this guy's door?!"
- There is no magic Operational Security (OPSEC) sauce...
 - And again, anonymity only works if there is a crowd

Censorship Resistance: Pluggable Transports

CS 161 Computer Security

- Tor is really used by two separate communities
 - Anonymity types who want anonymity in their communication
 - Censorship-resistant types who want to communicate despite government action
- Vanilla Tor fails the latter completely
- So there is a framework to deploy bridges that encapsulate Tor over some other protocol
 - So if you are in a hostile network...

OBS3 Blocking: China Style

CS 161 Computer Security

- Its pretty easy to recognize something is *probably* the Tor obs3 obfuscation protocol
 - But there may be false positives...
 - And if you are scanning all internet traffic in China the base rate problem is going to get you
- So they scan all Internet traffic looking for obs3...
 - And then try to connect to any server that looks like obs3
- If it is verified as an obs3 proxy...
 - China then blocks that IP/port for 24 hours

Meek: Collateral Freedom

CS 161 Computer Security

- Meek is another pluggable transport
 - It uses Google App engine and other cloud services
- Does a TLS connection to the cloud service
- And then encapsulates the Tor frames in requests laundered through the cloud service
- Goal is "Too important to block"
 - The TLS handshake is to a legitimate, should not be blocked service
 - And traffic analysis to tell the difference between Meek and the TLS service is going to be hard/have false positives

Tor Browser is also used to access Tor Hidden Services aka .onion sites

- Services that only exist in the Tor network
 - So the service, not just the client, has possible anonymity protection
 - The "Dark Web"

CS 161 Computer Securit

- A hash of the hidden service's public key
 - http://pwoah7foa6au2pul.onion
 - AlphaBay, one of many dark markets
 - https://facebookcorewwwi.onion
 - In this case, Facebook spent a lot of CPU time to create something distinctive
- Using this key hash, can query to set up a circuit to create a hidden service at a rendezvous point

Tor Hidden Service: Setting Up Introduction Point

CS 161 Computer Security

Tor Hidden Service: Query for Introduction, Arrange Rendevous

Tor Hidden Service: Rendevous and Data

CS 161 Computer Security

Remarks...

CS 161 Computer Security

- Want to keep your guard node constant for a long period of time...
 - Since the creation of new circuits is far easier to notice than any other activity
- Want to use a different node for the rendezvous point and introduction
 - Don't want the rendezvous point to know who you are connecting to
- These are *slow!*
 - Going through 6+ hops in the Tor network!

Non-Hidden Tor Hidden Service: Connect Directly to Rendezvous

Non-Hidden Hidden Services Improve Performance

CS 161 Computer Security

- No longer rely on exit nodes being honest
 - No longer rely on exit node bandwidth either
- Reduces the number of hops to be the same as a not hidden service
- Result: Huge performance win!
 - Not slow like a hidden service
 - Not limited by exit node bandwidth

Real use for *true hidden* hidden services

CS 161 Computer Security

- "Non-arbitrageable criminal activity"
 - Some crime which is universally attacked and targeted
 - So can't use "bulletproof hosting", CDNs like CloudFlare, or suitable "foreign" machine rooms
- Dark Markets
 - Marketplaces based on Bitcoin or other alternate currency
- Cybercrime Forums
 - Hoping to protect users/administrators from the fate of earlier markets
- Child Exploitation

The Dark Market Concept

- Four innovations:
- A censorship-resistant payment (Bitcoin)
 - Needed because illegal goods are not supported by Paypal etc
 - Bitcoin/cryptocurrency is the only game in town for US/Western Europe after the Feds smacked down Liberty Reserve and eGold
- An eBay-style ratings system with mandatory feedback
 - Vendors gain positive reputation through continued transactions
- An escrow service to handle disputes
 - Result is the user (should) only need to trust the market, not the vendors
- Accessable *only* as a Tor hidden service
 - Hiding the market from law enforcement

The Dark Markets: History

- All pretty much follow the template of the original "Silk Road"
 - Founded in 2011, Ross Ulbricht busted in October 2013
- The original Silk Road actually (mostly) lived up to its libertarian ideals
 - Including the libertarian ideal that if someone rips you off you should be able to call up the Hell's Angels and put a hit on them
 - And the libertarian idea if someone is foolish enough to THINK you are a member of the Hell's Angels you can rip them off for a large fortune for a fake hit
- Since then, markets come and go
 - But you can generally find the latest gossip on "deepdotweb" and Reddit /r/darknetmarkets

The Dark Markets: Not So Big, and **Not Growing!**

- Weaver and Popa
- Kyle Soska and Nicolas Christin of CMU have crawled the dark markets for years
 - These markets *deliberately* leak sales rate information from mandatory reviews
- So simply crawl the markets, see the prices, see the volume, voila...
- Takeaways:
 - Market size has been relatively steady for years, about \$300-500k a day sales
 - Dominated by Pot, MDMA, and stimulants, with secondary significance with opioids and psychedelics
 - A few sellers and a few markets dominate the revenue: A fair bit of "Winner take all"
 - But knock down any "winner" and another one takes its place

The Scams...

- You need a reputation for honesty to be a good crook
 - But you can burn that reputation for short-term profit
- The "Exit Scam" (e.g. pioneered by Tony76 on Silk Road)
 - Built up a positive reputation
 - Then have a big 4/20 sale
 - Require buyers to "Finalize Early"
 - Bypass escrow because of "problems"
 - Take the money and run!
- Can also do this on an entire *market* basis
 - The "Sheep Marketplace" being the most famous

And then the Child Exploitation types

- This is why I'm quite happy to see Tor Hidden Services burn!!!
 - Because these do represent a serious problem: The success against "PlayPen" shows just how major these are
- A far bigger systemic problem than the dark markets:
 - Dark markets are low volume, and not getting worse
 - Plus the libertarian attitude of "drug users are mostly harming themselves, its the drugassociated crime that is the problem"
 - No indication of any *successful* murder resulting from dark market activity
 - But these are harming others
 - They are also harming Tor: Tor itself is a very valuable tool for many legitimate uses, but the presence of the child exploitation sites on hidden services is a stain on Tor itself

Deanonymizing Hidden Services: Hacking...

CS 161 Computer Security

- Most dark-net services are not very well run...
 - Either common off-the-shelf drek or custom drek
- And most have now learned don't ask questions on StackOverflow
 - Here's looking at you, frosty...
- So they don't have a great deal of IT support services
 - A few hardening guides but nothing really robust
- Child exploitation is probably worse that dark markets
 - Dark markets at least attract some libertarian-types who will provide external aid

Onionscan...

CS 161 Computer Security

- A tool written by Sarah Jamie Lewis
 - Available at https://github.com/s-rah/onionscan
- Idea is to look for very common weaknesses in Tor Hidden services
 - Default apache information screens
 - Web fingerprints
 - I believe a future version will check for common ssh keys elsewhere on the Internet
- Its really "dual use"
 - .onion site operators should use to make sure they aren't making rookie mistakes
 - Those investigation .onion sites should use to see if the target site made a rookie mistake!

Deanonymizing Visitors To Your Site FBI Style

CS 161 Computer Security

- Start with a Tor Browser Bundle vulnerability...
 - Requires paying for a decent vulnerability: Firefox lacks sandboxing-type protections but you have to limit yourself to JavaScript
- Then take over the site you want to deanonymize visitors to...
- And simply hack the visitors to the site!
 - With a limited bit of malcode that just sends a "this is me" record back to an FBI-controlled computer

A History of NITs

- The FBI calls their malicious code a NIT or Network Investigatory Technique
 - Because it sounds better to a magistrate judge than saying "we're gonna go hacking"
- The exploit attempts to take over the visitor's browser
- But the payload is small: just a "I'm this computer" sent over the Internet to an FBI controlled Internet address

A History of NITs: PedoBook

CS 161 Computer Security

- The first known NIT targeting a hidden service was "PedoBook" back in 2012
 - Back then, many people used other web browsers to interact with Tor hidden services
- The NIT actually didn't even qualify as malcode
 - And a *defense* expert actually argued that it isn't hacking and probably didn't actually need a warrant
- Instead it was the "Metasploit Decloaking" flash applet:
 - A small bit of Flash which contacts the server directly, revealing the visitor's IP address

A History of NITs: Freedom Hosting

- The second big NIT targeted FreedomHosting
 - A hosting provider for Tor Hidden services with an, umm, generous policy towards abuse
 - Hosted services included TorMail (a mail service through Tor) and child porn sites
- FBI replaced the entire service with a NIT-serving page
- Fallout:
 - Very quickly noticed because there are multiple legit users of TorMail
 - Targeted an older Firefox vulnerability in Tor Browser
- Tor browser switched to much more aggressive autoupdates: Now you *must* have a zero-day for a NIT payload to work

A History of NITs: Playpen

CS 161 Computer Security

- The big one: PlayPen was a hidden service for child pornographers
 - In February 2015, the FBI captured the server and got a warrant to deploy a NIT to logged in visitors
 - The NIT warrant is public, but the malcode itself is still secret
- What we do know:
 - This was big: hundreds of arrests, many abuse victims rescued
 - It almost certainly used a zero-day exploit for Tor Browser
- Courts are still hashing this out over two big questions
 - Is it valid under Rule 41?
 - Most have conclude "no, but a technical not constitutional flaw"
 - Does the defense have a right to examine the exploit?
 - I'll argue no, but some defense attorneys have successfully used a graymail technique

A History of NITs: Yesterday's News!

- Weaver and Popa
- Someone (probably the French police) captured a child porn site called the "GiftBox"
 - They modified it to serve up a NIT
- The NIT payload was almost identical to the one in the Freedom Hosting case
 - Suggesting assistance from either the FBI or the FBI's contractor
- The exploit was a new zero-day exploit targeting Firefox
 - Patch released within hours
 - And yes, it was a C-related memory corruption (naturally)

NITs won't work well in the future against Tor!

- The current Tor browser hardened branch is just that, *hardened*
 - And it will become mainstream in a future version: it uses a technique, *selfrando*, with *no currently known workaround!*
- Hardening will require that breaking Tor browser, even to just send a "I'm here" message, will require a chain of exploits
 - An information leakage to determine the address of a function and enough content in that function to enable an attack
 - Or the leakage of a lot of functions
 - PLUS a conventional vulnerability
 - And just wait until the Firefox rendering engine gets sandboxed too...
 - And ad in darknet users who are running without JavaScript
- Upshot: the current FBI exploit will need a massive upgrade if it will work at all!
 - And future exploits will be *vastly* more expensive and rarer
 - We should thank the FBI for their very valuable contributions to software hardening

If Adversary Can See Both In-and-Out All Bets Are Off...

CS 161 Computer Security

- Tor is specifically not designed to resist the "global passive adversary"
 - In fact, no *low latency* anonymity network can resist such an adversary without adding cover traffic
 - And if you ad cover traffic this vastly increases overhead and has to explicitly limit performance
- Not a major weakness for most uses...
 - Adversary needs to see both the entry node and the exit node
- But a *yuge* weakness for hidden services and visitors to compromised hidden services

Step By Step: Deanonymizing Hidden Services (1)

Weaver and Po

- Slowly (Slowly!) spin up a large number of Tor nodes
 - They should not be exit nodes but just entry nodes/relays, and should use multiple hosting providers
 - After the CERT/CC debacle, the Tor project became very alert to many nodes joining at once
 - And you don't want to run a Tor exit node: You will get nastygrams if you run a Tor exit

Step by Step: Deanonymizing Hidden Services (2)

CS 161 Computer Security

- Once you have about ~10% of the Tor network
 - In theory you could deanonymize about 1% of the Tor traffic if you included exit nodes...
 - Which is why the Tor community worries about this
 - But running exit nodes brings a lot of grief...
 - But you can deanonymize the hidden servers a lot more!
- Connect to a targeted hidden service through Tor
 - Now send data to and from that hidden service
 - Look for corresponding marked data flows in your relays
- If the hidden service connected to one of your relays... WIN!

Flow Marking

- In connecting to the target service, you don't just send a request...
 - You break it up into pieces making it easier to "mark" the flow so you see it on the other side
- You also get lots of interesting timing information just from clicking around
 - Makes it easy to see your signal

You win when...

CS 161 Computer Security

- Either the hidden service choses your node as a guard node
 - If you want to be destructive, you can speed this up by checking when you are a relay but not the guard, DOS the identified guard node to force the HS to create a new circuit
- Or you detect the service's "private" guard node
 - Some hidden service operators believe they should run their own guard node only
 - The original Silk Road did this
 - Which you now issue a pen-register order on and find the real server