
Computer Science 161 Fall 2017 Weaver

Network 
Security

4

1

Computer Science 161 Fall 2017 Weaver

“Best Effort” is Lame! What to do?

• It’s the job of our Transport (layer 4) protocols to build data
delivery services that our apps need out of IP’s modest
layer-3 service

• #1 workhorse: TCP (Transmission Control Protocol)

• Service provided by TCP:

• Connection oriented (explicit set-up / tear-down)

• End hosts (processes) can have multiple concurrent long-lived communication

• Reliable, in-order, byte-stream delivery
• Robust detection & retransmission of lost data

2

Computer Science 161 Fall 2017 Weaver

TCP “Bytestream” Service

3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process A on host H1

Process B
on host H2

B
yte 80

B
yte 80

Processes don’t ever see packet boundaries,
lost or corrupted packets, retransmissions, etc.

Computer Science 161 Fall 2017 Weaver

Bidirectional communication:

4

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Process B on host H2

Process A
on host H1

B
yte 73

B
yte 73

There are two separate bytestreams, one in
each direction

Computer Science 161 Fall 2017 Weaver

TCP

5

Application

Transport

(Inter)Network

Link

Physical

7

4

3

2

1

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computer Science 161 Fall 2017 Weaver

TCP

6

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

These plus IP addresses define
a given connection

gateway

resolver
router

172.217.6.78

The Rest of
the Internet

4.	Connect	to	google.com	server

216.97.19.132

Suppose our browser used port 23144 for our connection, and
Google’s server used 443.

Then our connection will be fully specified by the single tuple
<216.97.19.132, 23144, 172.217.6.78, 443,TCP>

Computer Science 161 Fall 2017 Weaver

TCP

8

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to order data in the
connection: client program
receives data in order

Sequence number assigned to start of
byte stream is picked when
connection begins; doesn’t start at 0

Computer Science 161 Fall 2017 Weaver

TCP

9

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to say how much data has
been received

Acknowledgment
gives seq # just
beyond highest seq.
received in order.

If sender successfully
sends N bytestream
bytes starting at seq S
then “ack” for that will
be S+N.

Computer Science 161 Fall 2017 Weaver

Sequence Numbers

10

Host A

Host B

TCP Data

TCP Data

TCP
HDR

TCP
HDR

ISN (initial sequence number)

Sequence number
from A = 1st byte

of data

ACK sequence
number from B =
next expected

byte

Computer Science 161 Fall 2017 Weaver

TCP

11

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags have different meaning: 
 
SYN: Synchronize, 
used to initiate a connection

ACK: Acknowledge,
used to indicate
acknowledgement of data

FIN: Finish,
used to indicate no more data
will be sent (but can still receive
and acknowledge data)

RST: Reset,
used to terminate the
connection completely

Computer Science 161 Fall 2017 Weaver

TCP Conn. Setup & Data Exchange

12

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, SYN, Seq = x

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=3344, SYN+ACK, Seq = y, Ack = x+1

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80, ACK, Seq = x+1, Ack = y+1SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Computer Science 161 Fall 2017 Weaver

Abrupt Termination

• A sends a TCP packet with RESET (RST) flag to B

• E.g., because app. process on A crashed

• (Could instead be that B sends a RST to A)

• Assuming that the sequence numbers in the RST fit with what B expects, That’s It:

• B’s user-level process receives: ECONNRESET

• No further communication on connection is possible

13

SY
N

SY
N

 A
CK

A
CK

D
at

a

RS
TA

CK

time
A

B X

Computer Science 161 Fall 2017 Weaver

Disruption

• Normally, TCP finishes (“closes”) a connection by each side sending a
FIN control message

– Reliably delivered, since other side must ack

• But: if a TCP endpoint finds unable to continue (process dies; info from
other “peer” is inconsistent), it abruptly terminates by sending a RST
control message

– Unilateral
– Takes effect immediately (no ack needed)
– Only accepted by peer if has correct* sequence number

14

Computer Science 161 Fall 2017 Weaver

TCP Threat: Data Injection

• If attacker knows ports & sequence numbers (e.g., on-path attacker), attacker can inject data into
any TCP connection

• Receiver B is none the wiser!

• Termed TCP connection hijacking (or “session hijacking”)

• A general means to take over an already-established connection!

• We are toast if an attacker can see our TCP traffic!

• Because then they immediately know the port & sequence numbers

15

SY
N

SY
N

 A
CK

A
CK

D
at

a A
CK

time
A

B

N
as

ty
 D

at
a

N
as

ty
 D

at
a2

Computer Science 161 Fall 2017 Weaver

TCP Data Injection

16

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker (AirPwn, QUANTUM, etc) 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16
Data=“200 OK … <poison> …”

Client
dutifully

processes
as server’s
response

Computer Science 161 Fall 2017 Weaver

TCP Data Injection

17

Client (initiator) 
IP address 1.2.1.2, port 3344

Server 
IP address 9.8.7.6, port 80

SrcA=1.2.1.2, SrcP=3344, DstA=9.8.7.6, DstP=80,
ACK, Seq=x+1, Ack = y+1, Data=“GET /login.html

...

Attacker 
IP address 6.6.6.6, port N/A

SrcA=9.8.7.6, SrcP=80, 
DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16
Data=“200 OK … <poison> …”Client ignores since already

processed that part of
bytestream: the network
can duplicate packets 

so only pay attention to 
the first version in sequence

SrcA=9.8.7.6, SrcP=80, DstA=1.2.1.2, DstP=3344, 

ACK, Seq = y+1, Ack = x+16, Data=“200 OK … <html> …”

Computer Science 161 Fall 2017 Weaver

TCP Threat: Disruption

aka RST injection
• The attacker can also inject RST packets instead of

payloads

• TCP clients must respect RST packets and stop all communication

• Because its a real world error recovery mechanism

• So "just ignore RSTs don't work"

• Who uses this?

• China: The Great Firewall does this to TCP requests

• A long time ago: Comcast, to block BitTorrent uploads

• Some intrusion detection systems: To hopefully mitigate an attack in progress

18

Computer Science 161 Fall 2017 Weaver

TCP Threat: Blind Hijacking

• Is it possible for an off-path attacker to inject into a TCP
connection even if they can’t see our traffic?

• YES: if somehow they can infer or guess the port and
sequence numbers

19

Computer Science 161 Fall 2017 Weaver

TCP Threat: Blind Spoofing

• Is it possible for an off-path attacker to create a fake TCP
connection, even if they can’t see responses?

• YES: if somehow they can infer or guess the TCP initial
sequence numbers

• Why would an attacker want to do this?

• Perhaps to leverage a server’s trust of a given client as identified by its IP

address

• Perhaps to frame a given client so the attacker’s actions during the

connections can’t be traced back to the attacker

20

Computer Science 161 Fall 2017 Weaver

Blind Spoofing on TCP Handshake

21

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Attacker’s goal:
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1, Data

= “GET /transfer-money.html”

Computer Science 161 Fall 2017 Weaver

Blind Spoofing on TCP Handshake

22

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = x+1

Small Note #1: if alleged client receives this, will
be confused ⇒ send a RST back to server …
… So attacker may need to hurry!
But firewalls may inadvertently stop this reply to
the alleged client so it never sends the RST 🤔

Computer Science 161 Fall 2017 Weaver

Blind Spoofing on TCP Handshake

23

Alleged Client (not actual) 
IP address 1.2.1.2, port NA

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

Big Note #2: attacker doesn’t
get to see this packet!

Computer Science 161 Fall 2017 Weaver

Blind Spoofing on TCP Handshake

24

Alleged Client (not actual) 
IP address 1.2.1.2, port N/A

Server 
IP address 9.8.7.6, port 80

Blind Attacker
SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,

DstP=80, SYN, Seq = z

SrcA=9.8.7.6, SrcP=80, 

DstA=1.2.1.2, DstP=5566, SYN+ACK, Seq = y, Ack = z+1

So how can the attacker
figure out what value of y
to use for their ACK?

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1

SrcA=1.2.1.2, SrcP=5566, DstA=9.8.7.6,
DstP=80, ACK, Seq = z+1, ACK = y+1, Data

= “GET /transfer-money.html”

Computer Science 161 Fall 2017 Weaver

Reminder: Establishing a TCP Connection

25

SYN

SYN+ACK

ACK

A B

Data
Data

Each host tells its Initial
Sequence Number

(ISN) to the other host.

(Spec says to pick based on
local clock)

Hmm, any way
for the attacker
to know this?

Sure – make a non-spoofed
connection first, and see what

server used for ISN y then!

How Do We Fix This?

Use a (Pseudo)-Random
ISN

Computer Science 161 Fall 2017 Weaver

Summary of TCP Security Issues

• An attacker who can observe your TCP connection can
manipulate it:

• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence

numbers (both directions) and TCP ports

• Remains a major threat today

26

Computer Science 161 Fall 2017 Weaver

Summary of TCP Security Issues

• An attacker who can observe your TCP connection can manipulate it:

• Forcefully terminate by forging a RST packet

• Inject (spoof) data into either direction by forging data packets

• Works because they can include in their spoofed traffic the correct sequence numbers (both

directions) and TCP ports

• Remains a major threat today

• If attacker could predict the ISN chosen by a server, could “blind spoof” a
connection to the server

• Makes it appear that host ABC has connected, and has sent data of the attacker’s choosing,

when in fact it hasn’t

• Undermines any security based on trusting ABC’s IP address

• Allows attacker to “frame” ABC or otherwise avoid detection

• Fixed (mostly) today by choosing random ISNs

27

Computer Science 161 Fall 2017 Weaver

But wasn't fixed completely...

• CVE-2016-5696

• "Off-Path TCP Exploits: Global Rate Limit Considered Dangerous" Usenix Security

2016

• https://www.usenix.org/conference/usenixsecurity16/technical-sessions/

presentation/cao

• Key idea:

• RFC 5961 added some global rate limits that acted as an information leak:

• Could determine if two clients were communicating on a given port

• Could determine if you could correctly guess the sequence #s for this communication

• Required a third host to probe this and at the same time spoof packets

• Once you get the sequence #s, you can then inject arbitrary content into the TCP
stream (d'oh)

28

Computer Science 161 Fall 2017 Weaver

And the Firewall...

• Attackers can't attack what they can't talk to!

• If you don't accept any communication from an attacker, you can't be exploited

• The firewall is a network device (or software filter on the end host)
that restricts communication

• Primarily just by IP/Port or network/Port

• Default deny:

• By default, disallow any contact to this host on any port

• Default allow:

• By default, allow any contact to this host on any port

• More when we discuss Intrusion Detection next week
29

Computer Science 161 Fall 2017 Weaver

Theme of The Rest Of This 
Lecture...

30

Computer Science 161 Fall 2017 Weaver

But Trust Can Be Delegated…

31

Computer Science 161 Fall 2017 Weaver

The Rest of Today's Lecture:

• Applying crypto technology in practice

• Two simple abstractions cover 80% of the use cases for

crypto:

– “Sealed blob”: Data that is encrypted and authenticated under a

particular key

– Secure channel: Communication channel that can’t be eavesdropped

on or tampered with

• Today: TLS – a secure channel

• In network parlance, this is an “application layer” protocol but…

• designed to have any application over it, so really “layer 6.5” is a better

description
32

Computer Science 161 Fall 2017 Weaver

Building Secure End-to-End Channels

• End-to-end = communication protections achieved all the
way from originating client to intended server

• With no need to trust intermediaries

• Dealing with threats:

• Eavesdropping?

• Encryption (including session keys)

• Manipulation (injection, MITM)?

• Integrity (use of a MAC); replay protection

• Impersonation?

• Signatures

33

What’s missing?
Availability …()

Computer Science 161 Fall 2017 Weaver

Building A Secure End-to-End Channel: SSL/TLS

• SSL = Secure Sockets Layer (predecessor)

• TLS = Transport Layer Security (standard)

• Both terms used interchangeably

• Security for any application that uses TCP

• Secure = encryption/confidentiality + integrity + 

 authentication (of server, but not of client)

• Multiple uses

• Puts the ‘s’ in “https”

• Secures mail sent between servers (STARTTLS)

• Virtual Private Networks

34

Computer Science 161 Fall 2017 Weaver

An “Insecure” Web Page

35

Computer Science 161 Fall 2017 Weaver

A “Secure” Web Page

36

Lock Icon means: 

“Your communication between 
 your computer and the site  
 is encrypted and authenticated”
“Some other third party attests that 
 this site belongs to Amazon”
“These properties hold not just for the  
 main page, but any image or script is  
 also fetched from a site with attestation 
 and encryption”

People think lock icon means
“Hey, I can trust this site”  
(no matter where the lock icon 
itself actually appears).

Computer Science 161 Fall 2017 Weaver

Basic idea

• Browser (client) picks some
symmetric keys for encryption +
authentication

• Client sends them to server,
encrypted using RSA public-key
encryption

• Both sides send MACs

• Now they use these keys to encrypt

and authenticate all subsequent
messages, using symmetric-key
crypto

37

EKA(keys)

MACk1(…)

MACk2(…)

Browser Amazon
Server

Ek3(message), MACk1(…)

Computer Science 161 Fall 2017 Weaver

HTTPS Connection (SSL / TLS)

• Browser (client) connects via TCP to
Amazon’s HTTPS server

• Client picks 256-bit random number RB,
sends over list of crypto protocols it
supports

• Server picks 256-bit random number RS,
selects protocols to use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert
38

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = RB. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

Computer Science 161 Fall 2017 Weaver

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster
Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

• Using PS, RB, and RS, browser & server
derive symmetric cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction

• Done by seeding a pRNG in common between the

browser and the server: 
Repeated calls to the pRNG then create the common
keys

39

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

Amazon
Server

Computer Science 161 Fall 2017 Weaver

HTTPS Connection (SSL / TLS), cont.

• For RSA, browser constructs “Premaster Secret” PS

• Browser sends PS encrypted using Amazon’s public RSA

key KAmazon

• Using PS, RB, and RS, browser & server derive symm.

cipher keys 
(CB, CS) & MAC integrity keys (IB, IS)

• One pair to use in each direction

• Browser & server exchange MACs computed over entire
dialog so far

• If good MAC, Browser displays

• All subsequent communication encrypted w/ symmetric

cipher (e.g., AES128) cipher keys, MACs

• Sequence #’s thwart replay attacks

40

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Amazon
Server

Computer Science 161 Fall 2017 Weaver

Alternative: Ephemeral Key Exchange via  
Diffie-Hellman
• For Diffie-Hellman, server generates random a,

sends public parameters and ga mod p

• Signed with server’s private key

• Browser verifies signature

• Browser generates random b, computes PS =

gab mod p, sends gb mod p to server

• Server also computes 

PS = gab mod p

• Remainder is as before: from PS, RB, and RS,

browser & server derive symm. cipher keys (CB,
CS) and MAC integrity keys (IB, IS), etc…

41

Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p
PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} K
-1Amazon

…

Amazon
Server

Computer Science 161 Fall 2017 Weaver

Big Changes for TLS 1.3 
Diffie/Hellman and ECDHE only
• The RSA key exchange has a substantial vulnerability

• If the attacker is ever able to compromise the server and obtain its RSA key… 

the attacker can decrypt any traffic captured

• RSA lacks forward secrecy

• So TLS 1.3 uses DHE/ECDHE only

• TLS 1.3 also speeds things up:

• In the client hello, the client includes {gb mod p} for preferred parameters

• If the server finds it suitable, the server returns {ga mod p}

• Saves a round-trip time

42

Computer Science 161 Fall 2017 Weaver

But What About that 
“Certificate Validation”
• Certificate validation is used to

establish a chain of “trust”

• It actually is an attempt to build a

scalable trust framework

• This is commonly known as a
Public Key Infrastructure (PKI)

• Your browser is trusting the “Certificate
Authority” to be responsible…

43

Computer Science 161 Fall 2017 Weaver

Certificates

• Cert = signed statement about someone’s public key

• Note that a cert does not say anything about the identity of who gives you the cert

• It simply states a given public key KBob belongs to Bob …

• … and backs up this statement with a digital signature made using a different public/private key pair, say

from Verisign (a “Certificate Authority”)

• Bob then can prove his identity to you by you sending him something
encrypted with KBob …

• … which he then demonstrates he can read

• … or by signing something he demonstrably uses

• Works provided you trust that you have a valid copy of Verisign’s public

key …

• … and you trust Verisign to use prudence when she signs other people’s keys

44

Computer Science 161 Fall 2017 Weaver

Validating Amazon’s Identity

• Browser compares domain name in cert w/ URL

• Note: this provides an end-to-end property 

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to issuer

• These are hardwired into the browser – and trusted!

• There could be a chain of these …

• Browser applies issuer’s public key to verify signature S, obtaining the hash of
what the issuer signed

• Compares with its own SHA-1 hash of Amazon’s cert

• Assuming hashes match, now have high confidence it’s indeed Amazon’s public
key …

• assuming signatory is trustworthy, didn’t lose private key, wasn’t tricked into signing someone else’s

certificate, and that Amazon didn’t lose their key either…
45

Computer Science 161 Fall 2017 Weaver

End-to-End ⇒ Powerful Protections

• Attacker runs a sniffer to capture our WiFi session?

• But: encrypted communication is unreadable

• No problem!

• DNS cache poisoning?

• Client goes to wrong server

• But: detects impersonation

• No problem!

• Attacker hijacks our connection, injects new traffic

• But: data receiver rejects it due to failed integrity check since all communication has a mac on it

• No problem!

• Only thing a full man-in-the-middle attacker can do is inject RSTs, inject
invalid packets, or drop packets: limited to a denial of service

46

Computer Science 161 Fall 2017 Weaver

Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer

• These are hardwired into the browser – and trusted!

• But what if the browser can’t find a cert for the issuer?

47

Computer Science 161 Fall 2017 Weaver

48

Computer Science 161 Fall 2017 Weaver

Validating Amazon’s Identity, cont.

• Browser retrieves cert belonging to the issuer

• These are hardwired into the browser – and trusted!

• What if browser can’t find a cert for the issuer?

• If it can’t find the cert, then warns the user that site has not been verified

• Can still proceed, just without authentication

• Q: Which end-to-end security properties do we lose if we incorrectly
trust that the site is whom we think?

• A: All of them!

• Goodbye confidentiality, integrity, authentication

• Active attacker can read everything, modify, impersonate

49

Computer Science 161 Fall 2017 Weaver

SSL / TLS Limitations

• Properly used, SSL / TLS provides powerful end-to-end protections

• So why not use it for everything??

• Issues:

• Cost of public-key crypto (fairly minor)

• Takes non-trivial CPU processing (but today a minor issue)

• Note: symmetric key crypto on modern hardware is effectively free

• Hassle of buying/maintaining certs (fairly minor)

• LetsEncrypt makes this almost automatic

• Integrating with other sites that don’t use HTTPS

• Namely, you can’t: Non-HTTPS content won’t load!

• Latency: extra round trips ⇒ 1st page slower to load
50

Computer Science 161 Fall 2017 Weaver

SSL / TLS Limitations, cont.

• Problems that SSL / TLS does not take care of ?

• Censorship:

• The censor sees the certificate in the clear, so knows who the client is talking

to

• Optional Server Name Identification (SNI) is also sent in the clear

• The censor can then inject RSTs or block the communication

• SQL injection/XSS/CSRF/server-side coding/logic flaws

• Vulnerabilities introduced by server inconsistencies

51

Computer Science 161 Fall 2017 Weaver

SSL/TLS Problem: 
Revocation
• A site screws up and an attacker steals the private key

associated with a certificate, what now?

• Certificates have a timestamp and are only good for a specified time

• But this time is measured in years!?!?

• Two mitigations:

• Certificate revocation lists

• Your browser occasionally calls back to get a list of "no longer accepted" certificates

• OSCP

• Online Certificate Status Protocol: 

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol

52

Computer Science 161 Fall 2017 Weaver

“sslstrip”

(Amazon FINALLY fixed this recently)

53

Regular web surfing: http: URL

So no integrity - a MITM attacker
can alter pages returned by server
…

And when we click here …
… attacker has changed the corresponding link so that it’s ordinary
http rather than https!

We never get a chance to use TLS’s protections! :-(

Computer Science 161 Fall 2017 Weaver

SSL / TLS Limitations, cont.

• Problems that SSL / TLS does not take care of ?

• Censorship

• SQL injection / XSS / server-side coding/logic flaws

• Vulnerabilities introduced by server inconsistencies

• Browser and server bugs

• Bad passwords

• What about the trust?

54

Computer Science 161 Fall 2017 Weaver

TLS/SSL Trust Issues

• User has to make correct trust decisions …

55

Computer Science 161 Fall 2017 Weaver

56

Computer Science 161 Fall 2017 Weaver

57

Computer Science 161 Fall 2017 Weaver

58

Computer Science 161 Fall 2017 Weaver

59

Computer Science 161 Fall 2017 Weaver

60

Computer Science 161 Fall 2017 Weaver

61

Computer Science 161 Fall 2017 Weaver

62

Computer Science 161 Fall 2017 Weaver

63

The equivalent as seen by most Internet users:

(note: an actual Windows error message!)

Computer Science 161 Fall 2017 Weaver

TLS/SSL Trust Issues, cont.

• “Commercial certificate authorities protect you from anyone
from whom they are unwilling to take money.”

• Matt Blaze, circa 2001

• So how many CAs do we have to worry about, anyway?

64

Computer Science 161 Fall 2017 Weaver

65

Computer Science 161 Fall 2017 Weaver

TLS/SSL Trust Issues

• “Commercial certificate authorities protect you from anyone
from whom they are unwilling to take money.”

• Matt Blaze, circa 2001

• So how many CAs do we have to worry about, anyway?

• Of course, it’s not just their greed that matters …

66

Computer Science 161 Fall 2017 Weaver

67

Computer Science 161 Fall 2017 Weaver

68

Computer Science 161 Fall 2017 Weaver

69

This appears to be a fully
valid cert using normal

browser validation rules.

Only detected by Chrome due
to its introduction of cert

“pinning” – requiring that
certs for certain domains

must be signed by specific
CAs rather than any generally

trusted CA

Computer Science 161 Fall 2017 Weaver

70

Computer Science 161 Fall 2017 Weaver

The DigiNotar Fallout

• The result was the “CA Death Sentence”:

• Web browsers removed it from the trusted root certificate store

• This has just happened again with “WoSign”

• A Chinese CA

• WoSign would allow an interesting attack

• If I controlled nweaver.github.com…

• WoSign would allow me to create a certificate for *.github.com!?!?

• And a bunch of other shady shenanigans

71

Computer Science 161 Fall 2017 Weaver

TLS/SSL Trust Issues

• “Commercial certificate authorities protect you from anyone
from whom they are unwilling to take money.”

• Matt Blaze, circa 2001

• So how many CAs do we have to worry about, anyway?

• Of course, it’s not just their greed that matters …

• … and it’s not just their diligence & security that matters …

• “A decade ago, I observed that commercial certificate authorities protect you

from anyone from whom they are unwilling to take money. That turns out to
be wrong; they don't even do that much.” - Matt Blaze, circa 2010

72

Computer Science 161 Fall 2017 Weaver

So the Modern Solution: 
Invoke Ronald Reagan, “Trust, but Verify”
• Static Certificate Pinning: 

The chrome browser has a list of certificates or certificate authorities that
it trusts for given sites

• Now creating a fake certificate requires attacking a particular CA

• HPKP Certificate Pinning: 
The web server provides hashes of certificates that should be trusted

• This is “Leap of Faith”: The first time you assume it is honest but you will catch future changes

• Transparency mechanisms:

• Public logs provided by certificate authorities

• Browser extensions (EFF’s TLS observatory)

• Backbone monitors (ICSI’s TLS notary)

73

