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Controlling Networks … On The Cheap

• Motivation: How do you harden a set of systems against external attack?

• Key Observation:

• The more network services your machines run, the greater the risk


• Due to larger attack surface


• One approach: on each system, turn off unnecessary network services

• But you have to know all the services that are running

• And sometimes some trusted remote users still require access


• Plus key question of scaling

• What happens when you have to secure 100s/1000s of systems?

• Which may have different OSs, hardware & users …

• Which may in fact not all even be identified …

2



Computer Science 161 Fall 2017 Weaver

Taming Management Complexity

• Possibly more scalable defense: Reduce risk by blocking in 
the network outsiders from having unwanted access your 
network services


• Interpose a firewall the traffic to/from the outside must traverse

• Chokepoint can cover thousands of hosts

• Where in everyday experience do we see such chokepoints?
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Selecting a Security Policy

• Firewall enforces an (access control) policy:

• Who is allowed to talk to whom, accessing what service?


• Distinguish between inbound & outbound connections

• Inbound: attempts by external users to connect to services on internal machines

• Outbound: internal users to external services

• Why?  Because fits with a common threat model.  There are thousands of internal users 

(and we’ve vetted them).  There are billions of outsiders.


• Conceptually simple access control policy:

• Permit inside users to connect to any service

• External users restricted: 

• Permit connections to services meant to be externally visible

• Deny connections to services not meant for external access
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How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external access to 
services


• Shut them off as problems recognized


• Default Deny: start off permitting just a few known, well-
secured services


• Add more when users complain (and mgt. approves)


• Pros & Cons?

• Flexibility vs. conservative design

• Flaws in Default Deny get noticed more quickly / less painfully

5
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A Dumb Policy: 
Deny All Inbound connections...
• The simplest packet filters are stateless

• They examine only individual packets to make a decision


• But even the simplest policy can be hard to implement

• Deny All Inbound is the default policy on your home connection


• Allow:

• Any outbound packet

• Any inbound packet that is a reply...  OOPS


• We can fake it for TCP with some ugly hacks

• Allow all outbound TCP

• Allow all inbound TCP that does not have both the SYN flag set and the ACK flag not set

• May still allow an attacker to play some interesting games


• We can't even fake this for UDP!
6
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Stateful Packet Filter

• Stateful packet filter is a router that checks each packet 
against security rules and decides to forward or drop it


• Firewall keeps track of all connections (inbound/outbound)

• Each rule specifies which connections are allowed/denied 

(access control policy)

• A packet is forwarded if it is part of an allowed connection

7
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Example Rule

• allow tcp connection 4.5.5.4:* -> 3.1.1.2:80 
• Firewall should permit TCP connection that’s:

• Initiated by host with Internet address 4.5.5.4 and

• Connecting to port 80 of host with IP address 3.1.1.2


• Firewall should permit any packet associated with 
this connection


• Thus, firewall keeps a table of (allowed) active connections.  When firewall 
sees a packet, it checks whether it is part of one of those active connections. 
If yes, forward it; if no, check to see if rule should create a new allowed 
connection
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Example Rule

• allow tcp connection *:*/int -> 3.1.1.2:80/ext 
• Firewall should permit TCP connection that’s:

• Initiated by host with any internal host and

• Connecting to port 80 of host with IP address 3.1.1.2 on external Internet


• Firewall should permit any packet associated with 
this connection


• The /int indicates the network interface.

• This is "Allow all outgoing web requests"
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Example Ruleset

• allow tcp connection *:*/int -> *:*/ext 

• allow tcp connection *:*/ext -> 1.2.2.3:80/int 
• Firewall should permit outbound TCP connections 

(i.e., those that are initiated by internal hosts)

• Firewall should permit inbound TCP connection to our public webserver at IP address 

1.2.2.3
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Stateful Filtering

• Suppose you want to allow inbound connection to a FTP 
server, but block any attempts to login as “root”.  How 
would you build a stateful packet filter to do that? In 
particular, what state would it keep, for each connection?
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State Kept

• No state – just drop any packet with root in them


• Is it a FTP connection?

• Where in FTP state (e.g. command, what command)

• Src ip addr, dst ip addr, src port, dst port

• Inbound/outbound connection

• Keep piece of login command until it’s completed – only 

first 5 bytes of username
12
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Beware!

• Sender might be malicious and trying to sneak through 
firewall


• “root” might span packet boundaries

13
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Beware!

• Packets might be re-ordered
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Other Kinds of Firewalls

• Application-level firewall

– Firewall acts as a proxy.  TCP connection from client to firewall, which 

then makes a second TCP connection from firewall to server.

– Only modest benefits over stateful packet filter.
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Secure External Access to Inside Machines

• Often need to provide secure remote access to a network protected by a firewall

• Remote access, telecommuting, branch offices, …


• Create secure channel (Virtual Private Network, or VPN) to tunnel traffic from 
outside host/network to inside network

• Provides Authentication, Confidentiality, Integrity

• However, also raises perimeter issues

•     (Try it yourself at http://www.net.berkeley.edu/vpn/)

17
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Why Have Firewalls Been Successful?

• Central control – easy administration and update

• Single point of control: update one config to change security policies

• Potentially allows rapid response


• Easy to deploy – transparent to end users

• Easy incremental/total deployment to protect 1000’s


• Addresses an important problem

• Security vulnerabilities in network services are rampant

• Easier to use firewall than to directly secure code …

18
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Firewall Disadvantages

• Functionality loss – less connectivity, less risk

• May reduce network’s usefulness

• Some applications don’t work with firewalls

• Two peer-to-peer users behind different firewalls


• The malicious insider problem

• Assume insiders are trusted

• Malicious insider (or anyone gaining control of internal machine) can wreak havoc


• Firewalls establish a security perimeter

• Like Eskimo Pies: “hard crunchy exterior, soft creamy center”

• Threat from travelers with laptops, cell phones, …

19
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Pivoting...

• Thus the goal of the attacker is to "pivot" through the 
system

• Start running on a single victim system

• EG, using a channel that goes from the victim to the attacker's server over port 443: an 

encrypted web connection


• From there, you can now exploit internal systems directly

• Bypassing the primary firewall


• That is the problem: A single breach of the perimeter by an 
attacker and you can no longer make any assertions about 
subsequent internal state

20
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Takeaways on Firewalls

• Firewalls: Reference monitors and access control all over 
again, but at the network level


• Attack surface reduction

• Centralized control

21
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A Warning: 
I'm Giving Unfiltered DNSSEC
• Why?

• Because it is a well thought through cryptographic protocol designed to solve 

a real world data integrity problem

• It is a real world PKI with some very unique trust properties:

• A constrained path of trust along established business relationships.

• It is important to appreciate the real world of what it takes to build a secure 

system

• I've worked with it for far too much for my own sanity...

• And I'm a cruel bastard

22
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requesting host 
xyz.poly.edu www.mit.edu

root DNS server (‘.’) 
parent for .edu

local DNS server 
(resolver) 

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server 

ns.mit.edu 
child domain

7
8

TLD DNS server (‘.edu’) 
parent for mit.edu

Hypothetical: 
Securing DNS Using SSL/TLS
Host at xyz.poly.edu wants  

IP address for www.mit.edu

23
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But This Doesn't Work

• TLS provides channel integrity, but we need data integrity

• TLS in this scheme is not end to end 

• In particular, the recursive resolver is a known adversary:

• "NXDOMAIN wildcarding": a "helpful" page when you give a typo

• Malicious MitM of targeted schemes for profit


• TLS in this scheme is painfully slow:

• DNS lookups are 1 RTT, this is 3 RTTs!


• And confidentiality is of little benefit:

• We use DNS to contact hosts: 

Keeping the DNS secret doesn't actually disguise who you talk to!
24
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DNS security: 
If the Attacker sees the traffic...
• All bets are off:

• DNS offers NO protection against an on-path or in-path adversary

• Attacker sees the request, sends the reply, and the reply is accepted!


• The recursive resolver is the most common in-path 
adversary!


• It is implicitly trusted

• Yet often abuses the trust


• And this scheme keeps the resolver as the in-path 
adversary

25
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So Instead Let's Make 
DNS a PKI and records certificates
• www.berkeley.edu is already trusting the DNS authorities for 
berkeley.edu, .edu, and . (the root)

• Since www.berkeley.edu is in bailiwick for all these servers and you end up 

having to contact all of them to get an answer.


• So let's start signing things:

• . will sign .edu's key

• .edu will sign Berkeley's key

• Berkeley's key will sign the record 


• DNSSEC: DNS Security Extensions

• A heirarchical, distributed trust system to validate the mappings of names to values

26
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Enter DNSSEC  
(DNS Security Extensions)
• An extension to the DNS protocol to enable cryptographic 

authentication of DNS records

• Designed to prove the value of an answer, or that there is no answer!

• A restricted path of trust

• Unlike the HTTPS CA (Certificate Authority) system where your browser trusts every CA 

to speak for every site


• With backwards compatibility:

• Authority servers don’t need to support DNSSEC

• But clients should know that the domain is not secured

• Recursive and stub resolvers that don’t support DNSSEC must not receive 

DNSSEC information
27
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Reminder: 
DNS Message Structure
• DNS messages:

• A fixed header: Transaction ID, flags, etc...

• 1 question: Asking for a name and type

• 0-N answers: The set of answers

• 0-N authority: (“glue records”): Information about the authority servers  

and/or ownership of the domain

• 0-N additional: (“glue records”): Information about the authority server’s IP 

addresses

• Glue records are needed for the resolution process but aren’t the answer to the 

question

28



Computer Science 161 Fall 2017 Weaver

Reminder: 
DNS Resource Records and RRSETs
• DNS records (Resource Records) can be one of various 

types

• Name TYPE TTL Value


• Groups of records of the same name and type form 
RRSETs:


• E.g. all the nameservers for a given domain.

• All the records in the RRSET have the same name, type, and TTL

29
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The First New Type: 
OPT
• DNS contains some old limits:

• Only 8 total flag bits, and messages are limited to 512B


• DNSSEC messages are much bigger

• DNSSEC needs two additional flags

• DO: Want DNSSEC information

• CD: Don’t check DNSSEC information


• EDNS0 (Extension Mechanisms for DNS) adds the OPT resource record

• Sent in the request and reply in the additional section

• Uses CLASS field to specify how large a UDP reply can be handled

• Uses TTL field to add 16 flag bits

• Only flag bit currently used is DO


• Used to signal to the authority that the client desires DNSSEC information
30
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EDNS0 in action

• A query using dig +bufsize=1024 uses EDNS0

31

nweaver% dig +norecurse +bufsize=1024 slashdot.org @a.root-servers.net 

; <<>> DiG 9.8.3-P1 <<>> +bufsize=1024 slashdot.org @a.root-servers.net 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13419 
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 13 

;; OPT PSEUDOSECTION: 
; EDNS: version: 0, flags:; udp: 4096 

;; QUESTION SECTION: 
;slashdot.org.                  IN      A 

;; AUTHORITY SECTION: 
org.                    172800  IN      NS      a0.org.afilias-nst.info. 
... 
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The second new type, a certificate: 
RRSIG

• A signature over an RRSET (not just a single answer): 
Multiple fields

• Type: The DNS type which this is the RRSIG for

• Algorithm: IANA assigned identifier telling the encryption algorithm

• Labels: Number of segments in the DNS name

• Original TTL: The TTL for the record delivered by the authority

• Signature Expiration

• Signature Inception

• Both in seconds since January 1, 1970


• Key tag: What key was used (roughly.  Its a checksum on the key bits)

• Signer’s name

• Signature

32
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So an RRSIG in action 
(The NS entries for isc.org.)
• Type of the record its an RRSIG for

• Algorithm #5: RSA/SHA-1

• 2 labels in the name

• 7200s initial TTL


• Valid 2013-04-15-23:32:55 to 
2013-05-15-23:32:53


• Key tag 50012

• Key belongs to isc.org.

• And lots of cryptogarbage...

33

nweaver% dig +dnssec NS isc.org @8.8.8.8 
... 

;; ANSWER SECTION: 
isc.org.                4282    IN      NS      ns.isc.afilias-nst.info. 
isc.org.                4282    IN      NS      sfba.sns-pb.isc.org. 
isc.org.                4282    IN      NS      ord.sns-pb.isc.org. 
isc.org.                4282    IN      NS      ams.sns-pb.isc.org. 
isc.org.                4282    IN      RRSIG   NS 5 2 7200 20130515233253 
20130415233253 50012 isc.org. HUXmb89gB4pVehWRcuSkJg020gw2d8QMhTrcu1ZD7nKomXHQFupXl5vT 
iq5VUREGBQtnT7FEdPEJlCiJeogbAmqt3F1V5kBfdxZLe/EzYZgvSGWq sy/VHI5d+t6/
EiuCjM01UXCH1+L0YAqiHox5gsWMzRW2kvjZXhRHE2+U i1Q= 
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How Do We Know What 
Key To Use Part 1: DNSKEY
• The DNSKEY record stores key information

• 16 bits of flags

• Protocol identifier (always 3)

• Algorithm identifier

• And then the key itself


• The keys are split into multiple roles

• The Key Signing Key (KSK) is used only to sign the DNSKEY RRSET

• The Zone Signing Key (ZSK) is used to sign everything else


• The client has hardwired in one key for .

• This is the root’s KSK (Key Signing Key)

34
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The DNSKEY for .

• The first is the root’s ZSK

• The second is the root’s 

KSK


• The RRSIG is signed using 
the KSK


• Now the client can verify that the 
ZSK is correct

35

nweaver% dig +norecurse +dnssec DNSKEY . @a.root-servers.net 
... 
;; ANSWER SECTION: 
.                       172800  IN      DNSKEY  256 3 8 AwEAAc5byZvwmHUlCQt7WSeAr3OZ2ao4x0Yj/
3UcbtFzQ0T67N7CpYmN qFmfvXxksS1/E+mtT0axFVDjiJjtklUsyqIm9ZlWGZKU3GZqI9Sfp1Bj 
Qkhi+yLa4m4y4z2N28rxWXsWHCY740PREnmUtgXRdthwABYaB2WPum3y RGxNCP1/ 
.                       172800  IN      DNSKEY  257 3 8 
AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/
RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD 
X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz 
W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS 
Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0= 
.                       172800  IN      RRSIG   DNSKEY 8 0 172800 20130425235959 20130411000000 
19036 . {Cryptographic Goop}
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But how do we know what 
key to use part 2?  DS
• The DS (Delegated Signer) record is relatively simple

• The key tag

• The algorithm identifier

• The hash function used

• The hash of the signer’s name and the KSK


• The parent signs DS (Delegated Signer) records for the 
child’s keys

• So for the DS for .org is provided by the root

• This is returned with the NS RRSET by the parent

• And the RRSIG is signed by the parent, not the child

36
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The DS for org.

• The two DS records are for the same key

• Just with different hash functions, SHA-256 and SHA-1


• The RRSIG is signed using the ZSK not the KSK

• And covers both DS records

37

nweaver% nweaver% dig +norecurse +dnssec www.isc.org @a.root-servers.net 
... 
;; AUTHORITY SECTION: 
org.                    172800  IN      NS      d0.org.afilias-nst.org. 
... 
org.                    172800  IN      NS      a0.org.afilias-nst.info. 
org.                    86400   IN      DS      21366 7 2 
96EEB2FFD9B00CD4694E78278B5EFDAB0A80446567B69F634DA078F0 D90F01BA 
org.                    86400   IN      DS      21366 7 1 E6C1716CFB6BDC84E84CE1AB5510DAC69173B5B2 
org.                    86400   IN      RRSIG   DS 8 1 86400 20130423000000 20130415230000 20580 . 
{Cryptographic Goop} 
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Putting It All Together To 
Lookup www.isc.org

38

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

. DNSKEY {cryptogoop} N/A Yes

? A www.isc.org

? A www.isc.org

? A www.isc.org  
Answers: 
Authority: 
org. NS a0.afilias-nst.info 
org. IN DS 21366 7 2 {cryptogoop} 
org. IN DS 21366 7 1 {cryptogoop} 
org. IN RRSIG DS 8 1 86400 20130423000000 
20130415230000 20580 . {cryptogoop} 
Additional:  
a0.afilias-nst.info A 199.19.56.1
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Putting It All Together To 
Lookup www.isc.org

39

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 No

org. DS {cryptogoop} 86400 No

org. RRSIG DS {goop} 86400 No

. DNSKEY {cryptogoop} N/A Yes

? DNSKEY .

? DNSKEY .  
Answers: 
. IN DNSKEY  257 3 8 {cryptogoop} 
. IN DNSKEY 256 3 8 {cryptogoop} 
. IN RRSIG DNSKEY 8 0 172800 20130425235959 
20130411000000 19036 . {cryptogoop} 
Authority: 
Additional:
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Putting It All Together To 
Lookup www.isc.org

40

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 No

org. DS {cryptogoop} 86400 No

org. RRSIG DS {goop} 86400 No

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

. DNSKEY {cryptogoop} N/A Yes
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41

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 Yes

org. DS {cryptogoop} 86400 Yes

org. RRSIG DS {goop} 86400 Yes

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

. DNSKEY {cryptogoop} N/A Yes

org. 
Authority Server

? A www.isc.org

? A www.isc.org  
Answers: 
Authority: 
isc.org. NS sfba.sns-pb.isc.org. 
isc.org. DS {cryptogoop} 
isc.org. RRSIG DS {cryptogoop} 
Additional:  
sfba.sns-pb.isc.org.     A 199.6.1.30 

Putting It All Together To 
Lookup www.isc.org
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Putting It All Together To 
Lookup www.isc.org

42

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 Yes

org. DS {cryptogoop} 86400 Yes

org. RRSIG DS {goop} 86400 Yes

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

isc.org. DS {cryptogoop} 86400 No

isc.org. DS {cryptogoop} 86400 No

isc.org. RRSIG DS {goop} 86400 No

isc.org. NS sfbay.sns-pb.isc.org 86400 No

sfbay.sns-pb.isc.org A 149.20.64.3 86400 No

. DNSKEY {cryptogoop} N/A Yes
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And so on...

• The process ends up requiring:

• Ask the root for www.isc.org and the DNSKEY for .

• Ask org for www.isc.org and the DNSKEY for org.

• Ask isc.org for www.isc.org and the DNSKEY for isc.org


• Dig commands

• dig +dnssec +norecurse www.isc.org @a.root-servers.net 

• dig +dnssec +norecurse DNSKEY . @a.root-servers.net 

• dig +dnssec +norecurse www.isc.org @199.19.56.1 

• dig +dnssec +norecurse DNSKEY org. @199.19.56.1 

• dig +dnssec +norecurse www.isc.org @149.20.64.3  

• dig +dnssec +norecurse DNSKEY isc.org. @149.20.64.3

43
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So why such a baroque structure?

• Goal is end-to-end data integrity

• Even authorized intermediaries such as the recursive resolver don’t need to be trusted

• Don’t benefit (much) from confidentiality since DNS is used to contact hosts


• Signature generation can be done all offline

• Attacker must compromise the signature generation system, not just the authority nameserver

• Allows other authority servers to be simply mirrors


• Validation can happen at either the recursive resolver or the client

• The DNSKEYs cache very well

• So most subsequent lookups will not need to do these lookups


• Constrained path of trust

• For a given name, can enumerate the trusted entities

44
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Another reason: 
Latency
• The DNS community is obsessed with latency

• Thus the refusal to simply switch to TCP for all DNS traffic 


• A recursive resolver may

• Automatically fetch the DNSKEY record with a parallel request

• While waiting for a child’s response, validate the parent’s DS record

• Generally the validation should be the same time or faster so we can do this in parallel


• Result: Only two signature validations of latency added even on uncached requests and no 
additional network latency


• One for the DNSKEY to get the ZSK

• One for the final RRSET


• A stub resolver looking up foo.example.com:

• In parallel fetch DS and DNSKEY for foo.example.com, example.com, .com, and the DNSKEY for .

45
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Two additional complications

• NOERROR:

• The name exists but there is no record of that given type for that name

• For DNSSEC, prove that there is no ds record

• Says the subdomain doesn’t sign with DNSSEC


• NXDOMAIN:

• The name does not exist


• NSEC (Provable denial of existence), a record with just two fields

• Next domain name

• The next valid name in the domain


• Valid types for this name

• In a bitmap for efficiency

46
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NSEC in action

• Name is valid so NOERROR but no answers

• Single NSEC record for www.isc.org:

• No names exist between www.isc.org and  

www-dev.isc.org

• www.isc.org only has an A, AAAA, RRSIG, and NSEC record

47

nweaver% dig +dnssec TXT www.isc.org @8.8.8.8 
... 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20430 
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1 
... 
;; QUESTION SECTION: 
;www.isc.org.                   IN      TXT 

;; AUTHORITY SECTION: 
... 
www.isc.org.            3600    IN      NSEC    www-dev.isc.org. A AAAA RRSIG NSEC 
www.isc.org.            3600    IN      RRSIG   NSEC {RRSIG DATA} 
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The Use of NSEC

• Proof that a name exists but no type exists for that name

• Critical for “This subdomain doesn’t support DNSSEC”: 

Return an NSEC record with the authority stating “There is no DS record”


• Proof that a name does not exist

• It falls between the two NSEC names

• Plus an NSEC saying “there is no wildcard”


• Allows trivial domain enumeration

• Attacker just starts at the beginning and walks through the NSEC records

• Some consider this bad...
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So NSEC3

• Rather than having the 
name, use a hash of the 
name


• Hash Algorithm

• Flags


• Iterations of the hash algorithm

• Salt (optional)

• The next name

• The RRTYPEs for this name

• Otherwise acts like NSEC, just 

in a different space
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nweaver% dig +dnssec TXT org @199.19.57.1 
... 
;; AUTHORITY SECTION: 
... 
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN NSEC3 1 1 1 D399EAAB  
    H9Q3IMI6H6CIJ4708DK5A3HMJLEIQ0PF NS SOA RRSIG DNSKEY NSEC3PARAM 
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN RRSIG NSEC3 {RRSIG} 
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Comments on NSEC3

• It doesn't really prevent enumeration

• You get a hash-space enumeration instead, but since people chose reasonable 

names...

• An attacker can just do a brute-force attack to find out what names exist and don't 

exist


• The salt is mostly pointless!

• Since the whole name is hashed, foo.example.com and foo.example.org will 

have different hashes anyway


• The only way to really prevent enumeration is to dynamically 
sign values

• But that defeats the purpose of DNSSEC's offline signature generation
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So what can possibly go wrong?

• Screwups on the authority side...

• Too many ways to count...

• But comcast is keeping track of it: 

Follow @comcastdns on twitter


• The validator can’t access DNSSEC records

• The validator can’t process DNSSEC records correctly
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Authority Side Screwups...

• Its quite common to screw up

• Tell your registrar you support DNSSEC when you don't

• Took down HBO Go's launch for Comcast users and those using Google 

Public DNS


• Rotate your key but present old signatures

• Forget that your signatures expire
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And The Recursive Resolver 
Must Not Be Trusted!
• Most deployments validate at the recursive resolver, not the 

client

• Notably Google Public DNS and Comcast


• This provides very little practical security:

• The recursive resolver has proven to be the biggest threat in DNS

• And this doesn't protect you between the recursive resolver and your system


• But causes a lot of headaches

• Comcast or Google invariably get blamed when a zone screws up

• Fortunately this is getting less common...
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DNSSEC transport

• A validating client must be able to fetch the DNSSEC 
related records


• It may be through the recursive resolver

• It may be by contacting arbitrary DNS servers on the Internet


• One of these two must work or the client can not validate 
DNSSEC


• This acts to limit DNSSEC's real use: 
Signing other types such as cryptographic fingerprints (e.g. DANE)
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Probe the Root 
To Check For DNSSEC Transport
• Can the client get DNSSEC data from the Internet?

• Probe every root with DO for:

• DS for .com with RRSIG

• DNSKEY for . with RRSIG

• NSEC for an invalid TLD with RRSIG


• Serves two purposes:

• Some networks have one or more bad root mirrors

• Notably one Chinese educational network has root mirrors for all but 3 that don’t 

support DNSSEC

• If no information can be retrieved

• Proxy which strips out DNSSEC information and/or can’t handle DO
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DNSSEC Root Transport: 
Results We've Seen In The Wild
• Bad news at Starbucks: Hotspot gateways often proxy all 

DNS and can’t handle DO-enabled traffic

• And then have DNS resolvers that can't handle DNSSEC requests!


• Confirmed the Chinese educational network “Bad root 
mirror” problem
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Implications of 
“No DNSSEC at Starbucks”
• DNSSEC failure depends on the usage.

• For name->address bindings:

• If the recursive resolver practices proper port randomization:

• No problem.  The same “attackers” who can manipulate your DNS could do anything they 

want at the proxy that’s controlling your DNS traffic

• Else:

• Problem.  Network is not secure


• For name->key bindings:

• Unless the resolver supports it directly, you are Out of Luck

• DNSSEC information must have an alternate channel if you want to use it to transmit keys 

instead of just IPs
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In fact, my preferred DNSSEC policy 
For Client Validation
• For name->address mappings

• Any existing APIs that don’t provide DNSSEC status

• If valid: use

• If invalid OR no complete DNSSEC chain:

• Begin an iterative fetch with the most precise DNSSEC-validated data

• Use the result without question


• For name->data mappings

• An API which returns DNSSEC status

• If valid: Use

• If invalid: Return DNSSEC failure status

• Up to the application
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And That's The Real 
Thing...
• DNSSEC in all its *emm* glory.

• OPT records to say "I want DNSSEC"

• RRSIG records are certificates

• DNSKEY records hold public keys

• DS records hold key fingerprints

• Used by the parent to tell the child's keys


• NSEC/NSEC3 records to prove that a name doesn't exist or 
there is no record of that type
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