
Computer Science 161 Fall 2017 Weaver

Network 
Security 

6

1



Computer Science 161 Fall 2017 Weaver

Controlling Networks … On The Cheap

• Motivation: How do you harden a set of systems against external attack?

• Key Observation:

• The more network services your machines run, the greater the risk


• Due to larger attack surface


• One approach: on each system, turn off unnecessary network services

• But you have to know all the services that are running

• And sometimes some trusted remote users still require access


• Plus key question of scaling

• What happens when you have to secure 100s/1000s of systems?

• Which may have different OSs, hardware & users …

• Which may in fact not all even be identified …

2



Computer Science 161 Fall 2017 Weaver

Taming Management Complexity

• Possibly more scalable defense: Reduce risk by blocking in 
the network outsiders from having unwanted access your 
network services


• Interpose a firewall the traffic to/from the outside must traverse

• Chokepoint can cover thousands of hosts

• Where in everyday experience do we see such chokepoints?

3

Internet Internal 
Network



Computer Science 161 Fall 2017 Weaver

Selecting a Security Policy

• Firewall enforces an (access control) policy:

• Who is allowed to talk to whom, accessing what service?


• Distinguish between inbound & outbound connections

• Inbound: attempts by external users to connect to services on internal machines

• Outbound: internal users to external services

• Why?  Because fits with a common threat model.  There are thousands of internal users 

(and we’ve vetted them).  There are billions of outsiders.


• Conceptually simple access control policy:

• Permit inside users to connect to any service

• External users restricted: 

• Permit connections to services meant to be externally visible

• Deny connections to services not meant for external access

4



Computer Science 161 Fall 2017 Weaver

How To Treat Traffic Not Mentioned in Policy?

• Default Allow: start off permitting external access to 
services


• Shut them off as problems recognized


• Default Deny: start off permitting just a few known, well-
secured services


• Add more when users complain (and mgt. approves)


• Pros & Cons?

• Flexibility vs. conservative design

• Flaws in Default Deny get noticed more quickly / less painfully

5

In general, use Default Deny

✓



Computer Science 161 Fall 2017 Weaver

A Dumb Policy: 
Deny All Inbound connections...
• The simplest packet filters are stateless

• They examine only individual packets to make a decision


• But even the simplest policy can be hard to implement

• Deny All Inbound is the default policy on your home connection


• Allow:

• Any outbound packet

• Any inbound packet that is a reply...  OOPS


• We can fake it for TCP with some ugly hacks

• Allow all outbound TCP

• Allow all inbound TCP that does not have both the SYN flag set and the ACK flag not set

• May still allow an attacker to play some interesting games


• We can't even fake this for UDP!
6



Computer Science 161 Fall 2017 Weaver

Stateful Packet Filter

• Stateful packet filter is a router that checks each packet 
against security rules and decides to forward or drop it


• Firewall keeps track of all connections (inbound/outbound)

• Each rule specifies which connections are allowed/denied 

(access control policy)

• A packet is forwarded if it is part of an allowed connection

7

Internet Internal 
Network



Computer Science 161 Fall 2017 Weaver

Example Rule

• allow tcp connection 4.5.5.4:* -> 3.1.1.2:80 
• Firewall should permit TCP connection that’s:

• Initiated by host with Internet address 4.5.5.4 and

• Connecting to port 80 of host with IP address 3.1.1.2


• Firewall should permit any packet associated with 
this connection


• Thus, firewall keeps a table of (allowed) active connections.  When firewall 
sees a packet, it checks whether it is part of one of those active connections. 
If yes, forward it; if no, check to see if rule should create a new allowed 
connection

8



Computer Science 161 Fall 2017 Weaver

Example Rule

• allow tcp connection *:*/int -> 3.1.1.2:80/ext 
• Firewall should permit TCP connection that’s:

• Initiated by host with any internal host and

• Connecting to port 80 of host with IP address 3.1.1.2 on external Internet


• Firewall should permit any packet associated with 
this connection


• The /int indicates the network interface.

• This is "Allow all outgoing web requests"

9



Computer Science 161 Fall 2017 Weaver

Example Ruleset

• allow tcp connection *:*/int -> *:*/ext 

• allow tcp connection *:*/ext -> 1.2.2.3:80/int 
• Firewall should permit outbound TCP connections 

(i.e., those that are initiated by internal hosts)

• Firewall should permit inbound TCP connection to our public webserver at IP address 

1.2.2.3

10



Computer Science 161 Fall 2017 Weaver

Stateful Filtering

• Suppose you want to allow inbound connection to a FTP 
server, but block any attempts to login as “root”.  How 
would you build a stateful packet filter to do that? In 
particular, what state would it keep, for each connection?

11



Computer Science 161 Fall 2017 Weaver

State Kept

• No state – just drop any packet with root in them


• Is it a FTP connection?

• Where in FTP state (e.g. command, what command)

• Src ip addr, dst ip addr, src port, dst port

• Inbound/outbound connection

• Keep piece of login command until it’s completed – only 

first 5 bytes of username
12



Computer Science 161 Fall 2017 Weaver

Beware!

• Sender might be malicious and trying to sneak through 
firewall


• “root” might span packet boundaries

13

…….….ro1

Packet #1

ot………..…………
2

Packet #2



Computer Science 161 Fall 2017 Weaver

Beware!

• Packets might be re-ordered

14

ot………..…………
2

…….….ro1



Computer Science 161 Fall 2017 Weaver

Firewall

r r
seq=1, TTL=22

n
seq=1, TTL=16 X

o o
seq=2, TTL=22

i
seq=2, TTL=16 X

o o
seq=3, TTL=22

c
seq=3, TTL=16 X

t t
seq=4, TTL=22

e
seq=4, TTL=16 X

Se
nd

er
 /

 A
tt

ac
ke

r
Receiver

r~~~

~~~~r~~~ro~~roo~root

~~~~
r~~~? 

n~~~?

ri~~? 

ni~~?

ri~~? ro~~? 

ni~~? no~~?
ric~? roc~? rio~? roo~? 
nic~? noc~? nio~? noo~?

rice? roce? rict? roct? riot? 
root? rioe? rooe? nice? 
noce? nict? noct? niot? 
noot? nioe? nooe? 

Packet discarded in transit due 
to TTL hop count expiring

TTL field in IP header 
specifies maximum 

forwarding hop count

Assume the Receiver is 
20 hops away

Assume firewall is 15 hops away

Beware!

15



Computer Science 161 Fall 2017 Weaver

Other Kinds of Firewalls

• Application-level firewall

– Firewall acts as a proxy.  TCP connection from client to firewall, which 

then makes a second TCP connection from firewall to server.

– Only modest benefits over stateful packet filter.

16



Computer Science 161 Fall 2017 Weaver

Secure External Access to Inside Machines

• Often need to provide secure remote access to a network protected by a firewall

• Remote access, telecommuting, branch offices, …


• Create secure channel (Virtual Private Network, or VPN) to tunnel traffic from 
outside host/network to inside network

• Provides Authentication, Confidentiality, Integrity

• However, also raises perimeter issues

•     (Try it yourself at http://www.net.berkeley.edu/vpn/)

17

Internet Company

Yahoo

User
VPN server

Fileserver



Computer Science 161 Fall 2017 Weaver

Why Have Firewalls Been Successful?

• Central control – easy administration and update

• Single point of control: update one config to change security policies

• Potentially allows rapid response


• Easy to deploy – transparent to end users

• Easy incremental/total deployment to protect 1000’s


• Addresses an important problem

• Security vulnerabilities in network services are rampant

• Easier to use firewall than to directly secure code …

18



Computer Science 161 Fall 2017 Weaver

Firewall Disadvantages

• Functionality loss – less connectivity, less risk

• May reduce network’s usefulness

• Some applications don’t work with firewalls

• Two peer-to-peer users behind different firewalls


• The malicious insider problem

• Assume insiders are trusted

• Malicious insider (or anyone gaining control of internal machine) can wreak havoc


• Firewalls establish a security perimeter

• Like Eskimo Pies: “hard crunchy exterior, soft creamy center”

• Threat from travelers with laptops, cell phones, …

19



Computer Science 161 Fall 2017 Weaver

Pivoting...

• Thus the goal of the attacker is to "pivot" through the 
system

• Start running on a single victim system

• EG, using a channel that goes from the victim to the attacker's server over port 443: an 

encrypted web connection


• From there, you can now exploit internal systems directly

• Bypassing the primary firewall


• That is the problem: A single breach of the perimeter by an 
attacker and you can no longer make any assertions about 
subsequent internal state

20



Computer Science 161 Fall 2017 Weaver

Takeaways on Firewalls

• Firewalls: Reference monitors and access control all over 
again, but at the network level


• Attack surface reduction

• Centralized control

21



Computer Science 161 Fall 2017 Weaver

A Warning: 
I'm Giving Unfiltered DNSSEC
• Why?

• Because it is a well thought through cryptographic protocol designed to solve 

a real world data integrity problem

• It is a real world PKI with some very unique trust properties:

• A constrained path of trust along established business relationships.

• It is important to appreciate the real world of what it takes to build a secure 

system

• I've worked with it for far too much for my own sanity...

• And I'm a cruel bastard

22



Computer Science 161 Fall 2017 Weaver

requesting host 
xyz.poly.edu www.mit.edu

root DNS server (‘.’) 
parent for .edu

local DNS server 
(resolver) 

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server 

ns.mit.edu 
child domain

7
8

TLD DNS server (‘.edu’) 
parent for mit.edu

Hypothetical: 
Securing DNS Using SSL/TLS
Host at xyz.poly.edu wants  

IP address for www.mit.edu

23

Idea: connections {1,8}, 
{2,3}, {4,5} and {6,7} all 
run over SSL / TLS



Computer Science 161 Fall 2017 Weaver

But This Doesn't Work

• TLS provides channel integrity, but we need data integrity

• TLS in this scheme is not end to end 

• In particular, the recursive resolver is a known adversary:

• "NXDOMAIN wildcarding": a "helpful" page when you give a typo

• Malicious MitM of targeted schemes for profit


• TLS in this scheme is painfully slow:

• DNS lookups are 1 RTT, this is 3 RTTs!


• And confidentiality is of little benefit:

• We use DNS to contact hosts: 

Keeping the DNS secret doesn't actually disguise who you talk to!
24



Computer Science 161 Fall 2017 Weaver

DNS security: 
If the Attacker sees the traffic...
• All bets are off:

• DNS offers NO protection against an on-path or in-path adversary

• Attacker sees the request, sends the reply, and the reply is accepted!


• The recursive resolver is the most common in-path 
adversary!


• It is implicitly trusted

• Yet often abuses the trust


• And this scheme keeps the resolver as the in-path 
adversary

25



Computer Science 161 Fall 2017 Weaver

So Instead Let's Make 
DNS a PKI and records certificates
• www.berkeley.edu is already trusting the DNS authorities for 
berkeley.edu, .edu, and . (the root)

• Since www.berkeley.edu is in bailiwick for all these servers and you end up 

having to contact all of them to get an answer.


• So let's start signing things:

• . will sign .edu's key

• .edu will sign Berkeley's key

• Berkeley's key will sign the record 


• DNSSEC: DNS Security Extensions

• A heirarchical, distributed trust system to validate the mappings of names to values

26



Computer Science 161 Fall 2017 Weaver

Enter DNSSEC  
(DNS Security Extensions)
• An extension to the DNS protocol to enable cryptographic 

authentication of DNS records

• Designed to prove the value of an answer, or that there is no answer!

• A restricted path of trust

• Unlike the HTTPS CA (Certificate Authority) system where your browser trusts every CA 

to speak for every site


• With backwards compatibility:

• Authority servers don’t need to support DNSSEC

• But clients should know that the domain is not secured

• Recursive and stub resolvers that don’t support DNSSEC must not receive 

DNSSEC information
27



Computer Science 161 Fall 2017 Weaver

Reminder: 
DNS Message Structure
• DNS messages:

• A fixed header: Transaction ID, flags, etc...

• 1 question: Asking for a name and type

• 0-N answers: The set of answers

• 0-N authority: (“glue records”): Information about the authority servers  

and/or ownership of the domain

• 0-N additional: (“glue records”): Information about the authority server’s IP 

addresses

• Glue records are needed for the resolution process but aren’t the answer to the 

question

28



Computer Science 161 Fall 2017 Weaver

Reminder: 
DNS Resource Records and RRSETs
• DNS records (Resource Records) can be one of various 

types

• Name TYPE TTL Value


• Groups of records of the same name and type form 
RRSETs:


• E.g. all the nameservers for a given domain.

• All the records in the RRSET have the same name, type, and TTL

29



Computer Science 161 Fall 2017 Weaver

The First New Type: 
OPT
• DNS contains some old limits:

• Only 8 total flag bits, and messages are limited to 512B


• DNSSEC messages are much bigger

• DNSSEC needs two additional flags

• DO: Want DNSSEC information

• CD: Don’t check DNSSEC information


• EDNS0 (Extension Mechanisms for DNS) adds the OPT resource record

• Sent in the request and reply in the additional section

• Uses CLASS field to specify how large a UDP reply can be handled

• Uses TTL field to add 16 flag bits

• Only flag bit currently used is DO


• Used to signal to the authority that the client desires DNSSEC information
30



Computer Science 161 Fall 2017 Weaver

EDNS0 in action

• A query using dig +bufsize=1024 uses EDNS0

31

nweaver% dig +norecurse +bufsize=1024 slashdot.org @a.root-servers.net 

; <<>> DiG 9.8.3-P1 <<>> +bufsize=1024 slashdot.org @a.root-servers.net 
;; global options: +cmd 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 13419 
;; flags: qr; QUERY: 1, ANSWER: 0, AUTHORITY: 6, ADDITIONAL: 13 

;; OPT PSEUDOSECTION: 
; EDNS: version: 0, flags:; udp: 4096 

;; QUESTION SECTION: 
;slashdot.org.                  IN      A 

;; AUTHORITY SECTION: 
org.                    172800  IN      NS      a0.org.afilias-nst.info. 
... 



Computer Science 161 Fall 2017 Weaver

The second new type, a certificate: 
RRSIG

• A signature over an RRSET (not just a single answer): 
Multiple fields

• Type: The DNS type which this is the RRSIG for

• Algorithm: IANA assigned identifier telling the encryption algorithm

• Labels: Number of segments in the DNS name

• Original TTL: The TTL for the record delivered by the authority

• Signature Expiration

• Signature Inception

• Both in seconds since January 1, 1970


• Key tag: What key was used (roughly.  Its a checksum on the key bits)

• Signer’s name

• Signature

32



Computer Science 161 Fall 2017 Weaver

So an RRSIG in action 
(The NS entries for isc.org.)
• Type of the record its an RRSIG for

• Algorithm #5: RSA/SHA-1

• 2 labels in the name

• 7200s initial TTL


• Valid 2013-04-15-23:32:55 to 
2013-05-15-23:32:53


• Key tag 50012

• Key belongs to isc.org.

• And lots of cryptogarbage...

33

nweaver% dig +dnssec NS isc.org @8.8.8.8 
... 

;; ANSWER SECTION: 
isc.org.                4282    IN      NS      ns.isc.afilias-nst.info. 
isc.org.                4282    IN      NS      sfba.sns-pb.isc.org. 
isc.org.                4282    IN      NS      ord.sns-pb.isc.org. 
isc.org.                4282    IN      NS      ams.sns-pb.isc.org. 
isc.org.                4282    IN      RRSIG   NS 5 2 7200 20130515233253 
20130415233253 50012 isc.org. HUXmb89gB4pVehWRcuSkJg020gw2d8QMhTrcu1ZD7nKomXHQFupXl5vT 
iq5VUREGBQtnT7FEdPEJlCiJeogbAmqt3F1V5kBfdxZLe/EzYZgvSGWq sy/VHI5d+t6/
EiuCjM01UXCH1+L0YAqiHox5gsWMzRW2kvjZXhRHE2+U i1Q= 



Computer Science 161 Fall 2017 Weaver

How Do We Know What 
Key To Use Part 1: DNSKEY
• The DNSKEY record stores key information

• 16 bits of flags

• Protocol identifier (always 3)

• Algorithm identifier

• And then the key itself


• The keys are split into multiple roles

• The Key Signing Key (KSK) is used only to sign the DNSKEY RRSET

• The Zone Signing Key (ZSK) is used to sign everything else


• The client has hardwired in one key for .

• This is the root’s KSK (Key Signing Key)

34



Computer Science 161 Fall 2017 Weaver

The DNSKEY for .

• The first is the root’s ZSK

• The second is the root’s 

KSK


• The RRSIG is signed using 
the KSK


• Now the client can verify that the 
ZSK is correct

35

nweaver% dig +norecurse +dnssec DNSKEY . @a.root-servers.net 
... 
;; ANSWER SECTION: 
.                       172800  IN      DNSKEY  256 3 8 AwEAAc5byZvwmHUlCQt7WSeAr3OZ2ao4x0Yj/
3UcbtFzQ0T67N7CpYmN qFmfvXxksS1/E+mtT0axFVDjiJjtklUsyqIm9ZlWGZKU3GZqI9Sfp1Bj 
Qkhi+yLa4m4y4z2N28rxWXsWHCY740PREnmUtgXRdthwABYaB2WPum3y RGxNCP1/ 
.                       172800  IN      DNSKEY  257 3 8 
AwEAAagAIKlVZrpC6Ia7gEzahOR+9W29euxhJhVVLOyQbSEW0O8gcCjF FVQUTf6v58fLjwBd0YI0EzrAcQqBGCzh/
RStIoO8g0NfnfL2MTJRkxoX bfDaUeVPQuYEhg37NZWAJQ9VnMVDxP/VHL496M/QZxkjf5/Efucp2gaD 
X6RS6CXpoY68LsvPVjR0ZSwzz1apAzvN9dlzEheX7ICJBBtuA6G3LQpz 
W5hOA2hzCTMjJPJ8LbqF6dsV6DoBQzgul0sGIcGOYl7OyQdXfZ57relS 
Qageu+ipAdTTJ25AsRTAoub8ONGcLmqrAmRLKBP1dfwhYB4N7knNnulq QxA+Uk1ihz0= 
.                       172800  IN      RRSIG   DNSKEY 8 0 172800 20130425235959 20130411000000 
19036 . {Cryptographic Goop}



Computer Science 161 Fall 2017 Weaver

But how do we know what 
key to use part 2?  DS
• The DS (Delegated Signer) record is relatively simple

• The key tag

• The algorithm identifier

• The hash function used

• The hash of the signer’s name and the KSK


• The parent signs DS (Delegated Signer) records for the 
child’s keys

• So for the DS for .org is provided by the root

• This is returned with the NS RRSET by the parent

• And the RRSIG is signed by the parent, not the child

36



Computer Science 161 Fall 2017 Weaver

The DS for org.

• The two DS records are for the same key

• Just with different hash functions, SHA-256 and SHA-1


• The RRSIG is signed using the ZSK not the KSK

• And covers both DS records

37

nweaver% nweaver% dig +norecurse +dnssec www.isc.org @a.root-servers.net 
... 
;; AUTHORITY SECTION: 
org.                    172800  IN      NS      d0.org.afilias-nst.org. 
... 
org.                    172800  IN      NS      a0.org.afilias-nst.info. 
org.                    86400   IN      DS      21366 7 2 
96EEB2FFD9B00CD4694E78278B5EFDAB0A80446567B69F634DA078F0 D90F01BA 
org.                    86400   IN      DS      21366 7 1 E6C1716CFB6BDC84E84CE1AB5510DAC69173B5B2 
org.                    86400   IN      RRSIG   DS 8 1 86400 20130423000000 20130415230000 20580 . 
{Cryptographic Goop} 



Computer Science 161 Fall 2017 Weaver

Putting It All Together To 
Lookup www.isc.org

38

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

. DNSKEY {cryptogoop} N/A Yes

? A www.isc.org

? A www.isc.org

? A www.isc.org  
Answers: 
Authority: 
org. NS a0.afilias-nst.info 
org. IN DS 21366 7 2 {cryptogoop} 
org. IN DS 21366 7 1 {cryptogoop} 
org. IN RRSIG DS 8 1 86400 20130423000000 
20130415230000 20580 . {cryptogoop} 
Additional:  
a0.afilias-nst.info A 199.19.56.1



Computer Science 161 Fall 2017 Weaver

Putting It All Together To 
Lookup www.isc.org

39

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 No

org. DS {cryptogoop} 86400 No

org. RRSIG DS {goop} 86400 No

. DNSKEY {cryptogoop} N/A Yes

? DNSKEY .

? DNSKEY .  
Answers: 
. IN DNSKEY  257 3 8 {cryptogoop} 
. IN DNSKEY 256 3 8 {cryptogoop} 
. IN RRSIG DNSKEY 8 0 172800 20130425235959 
20130411000000 19036 . {cryptogoop} 
Authority: 
Additional:



Computer Science 161 Fall 2017 Weaver

Putting It All Together To 
Lookup www.isc.org

40

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 No

org. DS {cryptogoop} 86400 No

org. RRSIG DS {goop} 86400 No

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

. DNSKEY {cryptogoop} N/A Yes



Computer Science 161 Fall 2017 Weaver

41

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 Yes

org. DS {cryptogoop} 86400 Yes

org. RRSIG DS {goop} 86400 Yes

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

. DNSKEY {cryptogoop} N/A Yes

org. 
Authority Server

? A www.isc.org

? A www.isc.org  
Answers: 
Authority: 
isc.org. NS sfba.sns-pb.isc.org. 
isc.org. DS {cryptogoop} 
isc.org. RRSIG DS {cryptogoop} 
Additional:  
sfba.sns-pb.isc.org.     A 199.6.1.30 

Putting It All Together To 
Lookup www.isc.org



Computer Science 161 Fall 2017 Weaver

Putting It All Together To 
Lookup www.isc.org

42

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 Yes

org. DS {cryptogoop} 86400 Yes

org. RRSIG DS {goop} 86400 Yes

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

isc.org. DS {cryptogoop} 86400 No

isc.org. DS {cryptogoop} 86400 No

isc.org. RRSIG DS {goop} 86400 No

isc.org. NS sfbay.sns-pb.isc.org 86400 No

sfbay.sns-pb.isc.org A 149.20.64.3 86400 No

. DNSKEY {cryptogoop} N/A Yes



Computer Science 161 Fall 2017 Weaver

And so on...

• The process ends up requiring:

• Ask the root for www.isc.org and the DNSKEY for .

• Ask org for www.isc.org and the DNSKEY for org.

• Ask isc.org for www.isc.org and the DNSKEY for isc.org


• Dig commands

• dig +dnssec +norecurse www.isc.org @a.root-servers.net 

• dig +dnssec +norecurse DNSKEY . @a.root-servers.net 

• dig +dnssec +norecurse www.isc.org @199.19.56.1 

• dig +dnssec +norecurse DNSKEY org. @199.19.56.1 

• dig +dnssec +norecurse www.isc.org @149.20.64.3  

• dig +dnssec +norecurse DNSKEY isc.org. @149.20.64.3

43



Computer Science 161 Fall 2017 Weaver

So why such a baroque structure?

• Goal is end-to-end data integrity

• Even authorized intermediaries such as the recursive resolver don’t need to be trusted

• Don’t benefit (much) from confidentiality since DNS is used to contact hosts


• Signature generation can be done all offline

• Attacker must compromise the signature generation system, not just the authority nameserver

• Allows other authority servers to be simply mirrors


• Validation can happen at either the recursive resolver or the client

• The DNSKEYs cache very well

• So most subsequent lookups will not need to do these lookups


• Constrained path of trust

• For a given name, can enumerate the trusted entities

44



Computer Science 161 Fall 2017 Weaver

Another reason: 
Latency
• The DNS community is obsessed with latency

• Thus the refusal to simply switch to TCP for all DNS traffic 


• A recursive resolver may

• Automatically fetch the DNSKEY record with a parallel request

• While waiting for a child’s response, validate the parent’s DS record

• Generally the validation should be the same time or faster so we can do this in parallel


• Result: Only two signature validations of latency added even on uncached requests and no 
additional network latency


• One for the DNSKEY to get the ZSK

• One for the final RRSET


• A stub resolver looking up foo.example.com:

• In parallel fetch DS and DNSKEY for foo.example.com, example.com, .com, and the DNSKEY for .

45



Computer Science 161 Fall 2017 Weaver

Two additional complications

• NOERROR:

• The name exists but there is no record of that given type for that name

• For DNSSEC, prove that there is no ds record

• Says the subdomain doesn’t sign with DNSSEC


• NXDOMAIN:

• The name does not exist


• NSEC (Provable denial of existence), a record with just two fields

• Next domain name

• The next valid name in the domain


• Valid types for this name

• In a bitmap for efficiency

46



Computer Science 161 Fall 2017 Weaver

NSEC in action

• Name is valid so NOERROR but no answers

• Single NSEC record for www.isc.org:

• No names exist between www.isc.org and  

www-dev.isc.org

• www.isc.org only has an A, AAAA, RRSIG, and NSEC record

47

nweaver% dig +dnssec TXT www.isc.org @8.8.8.8 
... 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20430 
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1 
... 
;; QUESTION SECTION: 
;www.isc.org.                   IN      TXT 

;; AUTHORITY SECTION: 
... 
www.isc.org.            3600    IN      NSEC    www-dev.isc.org. A AAAA RRSIG NSEC 
www.isc.org.            3600    IN      RRSIG   NSEC {RRSIG DATA} 



Computer Science 161 Fall 2017 Weaver

The Use of NSEC

• Proof that a name exists but no type exists for that name

• Critical for “This subdomain doesn’t support DNSSEC”: 

Return an NSEC record with the authority stating “There is no DS record”


• Proof that a name does not exist

• It falls between the two NSEC names

• Plus an NSEC saying “there is no wildcard”


• Allows trivial domain enumeration

• Attacker just starts at the beginning and walks through the NSEC records

• Some consider this bad...

48



Computer Science 161 Fall 2017 Weaver

So NSEC3

• Rather than having the 
name, use a hash of the 
name


• Hash Algorithm

• Flags


• Iterations of the hash algorithm

• Salt (optional)

• The next name

• The RRTYPEs for this name

• Otherwise acts like NSEC, just 

in a different space

49

nweaver% dig +dnssec TXT org @199.19.57.1 
... 
;; AUTHORITY SECTION: 
... 
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN NSEC3 1 1 1 D399EAAB  
    H9Q3IMI6H6CIJ4708DK5A3HMJLEIQ0PF NS SOA RRSIG DNSKEY NSEC3PARAM 
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN RRSIG NSEC3 {RRSIG} 



Computer Science 161 Fall 2017 Weaver

Comments on NSEC3

• It doesn't really prevent enumeration

• You get a hash-space enumeration instead, but since people chose reasonable 

names...

• An attacker can just do a brute-force attack to find out what names exist and don't 

exist


• The salt is mostly pointless!

• Since the whole name is hashed, foo.example.com and foo.example.org will 

have different hashes anyway


• The only way to really prevent enumeration is to dynamically 
sign values

• But that defeats the purpose of DNSSEC's offline signature generation

50



Computer Science 161 Fall 2017 Weaver

So what can possibly go wrong?

• Screwups on the authority side...

• Too many ways to count...

• But comcast is keeping track of it: 

Follow @comcastdns on twitter


• The validator can’t access DNSSEC records

• The validator can’t process DNSSEC records correctly

51



Computer Science 161 Fall 2017 Weaver

Authority Side Screwups...

• Its quite common to screw up

• Tell your registrar you support DNSSEC when you don't

• Took down HBO Go's launch for Comcast users and those using Google 

Public DNS


• Rotate your key but present old signatures

• Forget that your signatures expire

52



Computer Science 161 Fall 2017 Weaver

And The Recursive Resolver 
Must Not Be Trusted!
• Most deployments validate at the recursive resolver, not the 

client

• Notably Google Public DNS and Comcast


• This provides very little practical security:

• The recursive resolver has proven to be the biggest threat in DNS

• And this doesn't protect you between the recursive resolver and your system


• But causes a lot of headaches

• Comcast or Google invariably get blamed when a zone screws up

• Fortunately this is getting less common...

53



Computer Science 161 Fall 2017 Weaver

DNSSEC transport

• A validating client must be able to fetch the DNSSEC 
related records


• It may be through the recursive resolver

• It may be by contacting arbitrary DNS servers on the Internet


• One of these two must work or the client can not validate 
DNSSEC


• This acts to limit DNSSEC's real use: 
Signing other types such as cryptographic fingerprints (e.g. DANE)

54



Computer Science 161 Fall 2017 Weaver

Probe the Root 
To Check For DNSSEC Transport
• Can the client get DNSSEC data from the Internet?

• Probe every root with DO for:

• DS for .com with RRSIG

• DNSKEY for . with RRSIG

• NSEC for an invalid TLD with RRSIG


• Serves two purposes:

• Some networks have one or more bad root mirrors

• Notably one Chinese educational network has root mirrors for all but 3 that don’t 

support DNSSEC

• If no information can be retrieved

• Proxy which strips out DNSSEC information and/or can’t handle DO

55



Computer Science 161 Fall 2017 Weaver

DNSSEC Root Transport: 
Results We've Seen In The Wild
• Bad news at Starbucks: Hotspot gateways often proxy all 

DNS and can’t handle DO-enabled traffic

• And then have DNS resolvers that can't handle DNSSEC requests!


• Confirmed the Chinese educational network “Bad root 
mirror” problem

56



Computer Science 161 Fall 2017 Weaver

Implications of 
“No DNSSEC at Starbucks”
• DNSSEC failure depends on the usage.

• For name->address bindings:

• If the recursive resolver practices proper port randomization:

• No problem.  The same “attackers” who can manipulate your DNS could do anything they 

want at the proxy that’s controlling your DNS traffic

• Else:

• Problem.  Network is not secure


• For name->key bindings:

• Unless the resolver supports it directly, you are Out of Luck

• DNSSEC information must have an alternate channel if you want to use it to transmit keys 

instead of just IPs
57



Computer Science 161 Fall 2017 Weaver

In fact, my preferred DNSSEC policy 
For Client Validation
• For name->address mappings

• Any existing APIs that don’t provide DNSSEC status

• If valid: use

• If invalid OR no complete DNSSEC chain:

• Begin an iterative fetch with the most precise DNSSEC-validated data

• Use the result without question


• For name->data mappings

• An API which returns DNSSEC status

• If valid: Use

• If invalid: Return DNSSEC failure status

• Up to the application

58



Computer Science 161 Fall 2017 Weaver

And That's The Real 
Thing...
• DNSSEC in all its *emm* glory.

• OPT records to say "I want DNSSEC"

• RRSIG records are certificates

• DNSKEY records hold public keys

• DS records hold key fingerprints

• Used by the parent to tell the child's keys


• NSEC/NSEC3 records to prove that a name doesn't exist or 
there is no record of that type

59


