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Enter DNSSEC  
(DNS Security Extensions)
• An extension to the DNS protocol to enable cryptographic 

authentication of DNS records

• Designed to prove the value of an answer, or that there is no answer!

• A restricted path of trust

• Unlike the HTTPS CA (Certificate Authority) system where your browser trusts every CA 

to speak for every site


• With backwards compatibility:

• Authority servers don’t need to support DNSSEC

• But clients should know that the domain is not secured

• Recursive and stub resolvers that don’t support DNSSEC must not receive 

DNSSEC information
2
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Reminder: DNSSEC Record Types & Terms...

• RRSIG:

• Effectively a certificate signing a DNS RRSET

• Only valid for a specific interval


• DS:

• Delegated Signer:  This subdomain will use H(K) as the Key Signing Key


• DNSKEY:

• A (raw) Public Key of the specified type


• KSK & ZSK:

• Key Signing Key -> Key that signs the Zone Signing Key

• Zone Signing Key -> Key that signs everything else in the zone

3
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Putting It All Together To 
Lookup www.isc.org

4

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

. DNSKEY {cryptogoop} N/A Yes

? A www.isc.org

? A www.isc.org

? A www.isc.org  
Answers: 
Authority: 
org. NS a0.afilias-nst.info 
org. IN DS 21366 7 2 {cryptogoop} 
org. IN DS 21366 7 1 {cryptogoop} 
org. IN RRSIG DS 8 1 86400 20130423000000 
20130415230000 20580 . {cryptogoop} 
Additional:  
a0.afilias-nst.info A 199.19.56.1
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Putting It All Together To 
Lookup www.isc.org

5

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 No

org. DS {cryptogoop} 86400 No

org. RRSIG DS {goop} 86400 No

. DNSKEY {cryptogoop} N/A Yes

? DNSKEY .

? DNSKEY .  
Answers: 
. IN DNSKEY  257 3 8 {cryptogoop} 
. IN DNSKEY 256 3 8 {cryptogoop} 
. IN RRSIG DNSKEY 8 0 172800 20130425235959 
20130411000000 19036 . {cryptogoop} 
Authority: 
Additional:
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Putting It All Together To 
Lookup www.isc.org

6

. 
Authority Server 
(the “root”)

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 No

org. DS {cryptogoop} 86400 No

org. RRSIG DS {goop} 86400 No

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

. DNSKEY {cryptogoop} N/A Yes
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7

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 Yes

org. DS {cryptogoop} 86400 Yes

org. RRSIG DS {goop} 86400 Yes

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

. DNSKEY {cryptogoop} N/A Yes

org. 
Authority Server

? A www.isc.org

? A www.isc.org  
Answers: 
Authority: 
isc.org. NS sfba.sns-pb.isc.org. 
isc.org. DS {cryptogoop} 
isc.org. RRSIG DS {cryptogoop} 
Additional:  
sfba.sns-pb.isc.org.     A 199.6.1.30 

Putting It All Together To 
Lookup www.isc.org
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Putting It All Together To 
Lookup www.isc.org

8

User’s ISP’s  
Recursive Resolver

Name Type Value TTL Valid
?

org. NS a0.afilia-nst.info No

a0.afilias-nst.info A 199.19.56.1 86400 No

org. DS {cryptogoop} 86400 Yes

org. DS {cryptogoop} 86400 Yes

org. RRSIG DS {goop} 86400 Yes

. DNSKEY {cryptogoop} 172800 Yes

. RRSIG DNSKEY {goop} 172800 Yes

isc.org. DS {cryptogoop} 86400 No

isc.org. DS {cryptogoop} 86400 No

isc.org. RRSIG DS {goop} 86400 No

isc.org. NS sfbay.sns-pb.isc.org 86400 No

sfbay.sns-pb.isc.org A 149.20.64.3 86400 No

. DNSKEY {cryptogoop} N/A Yes
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And so on...

• The process ends up requiring:

• Ask the root for www.isc.org and the DNSKEY for .

• Ask org for www.isc.org and the DNSKEY for org.

• Ask isc.org for www.isc.org and the DNSKEY for isc.org


• Dig commands

• dig +dnssec +norecurse www.isc.org @a.root-servers.net 

• dig +dnssec +norecurse DNSKEY . @a.root-servers.net 

• dig +dnssec +norecurse www.isc.org @199.19.56.1 

• dig +dnssec +norecurse DNSKEY org. @199.19.56.1 

• dig +dnssec +norecurse www.isc.org @149.20.64.3  

• dig +dnssec +norecurse DNSKEY isc.org. @149.20.64.3

9
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Two additional complications

• NOERROR:

• The name exists but there is no record of that given type for that name

• For DNSSEC, prove that there is no ds record

• Says the subdomain doesn’t sign with DNSSEC


• NXDOMAIN:

• The name does not exist


• NSEC (Provable denial of existence), a record with just two fields

• Next domain name

• The next valid name in the domain


• Valid types for this name

• In a bitmap for efficiency

10
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NSEC in action

• Name is valid so NOERROR but no answers

• Single NSEC record for www.isc.org:

• No names exist between www.isc.org and  

www-dev.isc.org

• www.isc.org only has an A, AAAA, RRSIG, and NSEC record

11

nweaver% dig +dnssec TXT www.isc.org @8.8.8.8 
... 
;; Got answer: 
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 20430 
;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 4, ADDITIONAL: 1 
... 
;; QUESTION SECTION: 
;www.isc.org.                   IN      TXT 

;; AUTHORITY SECTION: 
... 
www.isc.org.            3600    IN      NSEC    www-dev.isc.org. A AAAA RRSIG NSEC 
www.isc.org.            3600    IN      RRSIG   NSEC {RRSIG DATA} 
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The Use of NSEC

• Proof that a name exists but no type exists for that name

• Critical for “This subdomain doesn’t support DNSSEC”: 

Return an NSEC record with the authority stating “There is no DS record”


• Proof that a name does not exist

• It falls between the two NSEC names

• Plus an NSEC saying “there is no wildcard”


• Allows trivial domain enumeration

• Attacker just starts at the beginning and walks through the NSEC records

• Some consider this bad...

12
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So NSEC3

• Rather than having the 
name, use a hash of the 
name


• Hash Algorithm

• Flags


• Iterations of the hash algorithm

• Salt (optional)

• The next name

• The RRTYPEs for this name

• Otherwise acts like NSEC, just 

in a different space

13

nweaver% dig +dnssec TXT org @199.19.57.1 
... 
;; AUTHORITY SECTION: 
... 
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN NSEC3 1 1 1 D399EAAB  
    H9Q3IMI6H6CIJ4708DK5A3HMJLEIQ0PF NS SOA RRSIG DNSKEY NSEC3PARAM 
h9p7u7tr2u91d0v0ljs9l1gidnp90u3h.org. 86400 IN RRSIG NSEC3 {RRSIG} 
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Comments on NSEC3

• It doesn't really prevent enumeration

• You get a hash-space enumeration instead, but since people chose reasonable 

names...

• Just select random names until you get the entire hash space...

• An attacker can then do a brute-force attack to find out what names exist and don't exist


• The salt is mostly pointless!

• Since the whole name is hashed, foo.example.com and foo.example.org will 

have different hashes anyway


• The only way to really prevent enumeration is to dynamically sign 
values

• But that defeats the purpose of DNSSEC's offline signature generation

14
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So what can possibly go wrong?

• Screwups on the authority side...

• Too many ways to count...

• But comcast is keeping track of it: 

Follow @comcastdns on twitter


• The validator can’t access DNSSEC records

• The validator can’t process DNSSEC records correctly

15
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Authority Side Screwups...

• Its quite common to screw up

• Tell your registrar you support DNSSEC when you don't

• Took down HBO Go's launch for Comcast users and those using Google 

Public DNS


• Rotate your key but present old signatures

• Forget that your signatures expire

16
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And The Recursive Resolver 
Must Not Be Trusted!
• Most deployments validate at the recursive resolver, not the 

client

• Notably Google Public DNS and Comcast


• This provides very little practical security:

• The recursive resolver has proven to be the biggest threat in DNS

• And this doesn't protect you between the recursive resolver and your system


• But causes a lot of headaches

• Comcast or Google invariably get blamed when a zone screws up

• Fortunately this is getting less common...

17
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DNSSEC transport

• A validating client must be able to fetch the DNSSEC 
related records


• It may be through the recursive resolver

• It may be by contacting arbitrary DNS servers on the Internet


• One of these two must work or the client can not validate 
DNSSEC


• This acts to limit DNSSEC's real use: 
Signing other types such as cryptographic fingerprints (e.g. DANE)

18
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Probe the Root 
To Check For DNSSEC Transport
• Can the client get DNSSEC data from the Internet?

• Probe every root with DO for:

• DS for .com with RRSIG

• DNSKEY for . with RRSIG

• NSEC for an invalid TLD with RRSIG


• Serves two purposes:

• Some networks have one or more bad root mirrors

• Notably one Chinese educational network has root mirrors for all but 3 that don’t 

support DNSSEC

• If no information can be retrieved

• Proxy which strips out DNSSEC information and/or can’t handle DO

19
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DNSSEC Root Transport: 
Results We've Seen In The Wild
• Bad news at Cafes: Hotspot gateways often proxy all DNS 

and can’t handle DO-enabled traffic

• And then have DNS resolvers that can't handle DNSSEC requests!


• Confirmed the Chinese educational network “Bad root 
mirror” problem

20
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Implications of 
“No DNSSEC at Charbucks”
• DNSSEC failure depends on the usage.

• For name->address bindings:

• If the recursive resolver practices proper port randomization:

• No problem.  The same “attackers” who can manipulate your DNS could do anything they 

want at the proxy that’s controlling your DNS traffic

• Else:

• Problem.  Network is not secure


• For name->key bindings:

• Unless the resolver supports it directly, you are Out of Luck

• DNSSEC information must have an alternate channel if  

you want to use it to transmit keys instead of just IPs
21
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In fact, my preferred DNSSEC policy 
For Client Validation
• For name->address mappings

• Any existing APIs that don’t provide DNSSEC status

• If valid: use

• If invalid OR no complete DNSSEC chain:

• Begin an iterative fetch with the most precise DNSSEC-validated data

• Use the result without question


• For name->data mappings

• An API which returns DNSSEC status

• If valid: Use

• If invalid: Return DNSSEC failure status

• Up to the application

22
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And That's The Real 
Thing...
• DNSSEC in all its *emm* glory.

• OPT records to say "I want DNSSEC"

• RRSIG records are certificates

• DNSKEY records hold public keys

• DS records hold key fingerprints

• Used by the parent to tell the child's keys


• NSEC/NSEC3 records to prove that a name doesn't exist or 
there is no record of that type

23
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The Next Two Lectures...

• Today: The technology of detecting attacks

• Wednesday: The abuse of scalable NIDS

• NSA bulk surveillance: XKEYSCORE

• Chinese censorship: The "Great Firewall of China"

• Chinese attack: The "Great Cannon"

24
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And Project 3...

• Project 3 is now live...

• You are given a VM, scapy, and sample code...

• And get to bang on the Great Firewall of China

• Determine a request that triggers the Great Firewall and capture packets

• Build a function to create a TCP connection to a server and see if its being censored

• Build a function that determines where on the path the censor exists

• Build a function that conveys a message to the server that is not censored by the Great Firewall


• Start on the first two parts now!

• You will find that dealing with real packets and real networks can get real frustrating really fast 
• EG, the bridge interface isn't getting an IP address on AirBears!?!? 

• You may also find that some home NATs may really really screw things up...

• EG, change packet IPIDs, ports, etc, which will show up on ICMP time-expired packets. 

You have been warned!
25
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Structure of 
FooCorp Web Services

26

Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

8. 200 OK 
    Output of bin/amazeme
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Network Intrusion Detection

• Approach #1: look at the network traffic

• (a “NIDS”: rhymes with “kids”)

• Scan HTTP requests

• Look for “/etc/passwd” and/or “../../” in requests

• Indicates attempts to get files that the web server shouldn't provide

27
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Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

 bin/amazeme -p xxx

2. GET /amazeme.exe?profile=xxx

NIDS

Monitor sees a copy 
of incoming/outgoing 
HTTP traffic

8. 200 OK 
    Output of bin/amazeme

Structure of 
FooCorp Web Services

28
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Network Intrusion Detection

• Approach #1: look at the network traffic

• (a “NIDS”: rhymes with “kids”)

• Scan HTTP requests

• Look for “/etc/passwd” and/or “../../”


• Pros:

• No need to touch or trust end systems

• Can “bolt on” security

• Cheap: cover many systems w/ single monitor

• Cheap: centralized management

29
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How They Work:  
Scalable Network Intrusion Detection Systems

30

Tap

High Volume Filter

NIDS NodeNIDS NodeNIDS Node

Load Balancer

Is Not BitTorrent?

H(SIP, DIP)

Do this in OpenFlow:  
100 Gbps install 
at LBNL

Linear Scaling:  
10x the money... 
10x the bandwidth! 
1u gives 1-5 Gbps
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Inside the NIDS

31

220

GET

GET HT TP /fu bar/  1.1..

HTTP /b az/?id= 1f413 1.1...

mail.domain.target ESMTP Sendmail...

HTTP Request 
URL = /fubar/ 
Host = ....
HTTP Request 
URL = /baz/?id=... 
ID = 1f413
Sendmail 
From = someguy@... 
To = otherguy@...
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Network Intrusion Detection (NIDS)

• NIDS has a table of all active connections, 
and maintains state for each


• e.g., has it seen a partial match of /etc/passwd?


• What do you do when you see a new packet not associated 
with any known connection?


• Create a new connection: when NIDS starts it doesn’t know what 
connections might be existing

32
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Evasion

• What should NIDS do if it sees a RST packet?


• Assume RST will be received?

• Assume RST won’t be received?

• Other (please specify)

33

NIDS

/etc/p

RST
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Evasion

• What should NIDS do if it sees this? 

• Alert – it’s an attack

• No alert – it’s all good

• Other (please specify)

34

NIDS

/%65%74%63/%70%61%73%73%77%64
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Evasion

• Evasion attacks arise when you have “double parsing”  

• Inconsistency - interpreted differently between the monitor 
and the end system 

• Ambiguity - information needed to interpret correctly is 
missing

35
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Evasion Attacks (High-Level View)

• Some evasions reflect incomplete analysis

• In our FooCorp example, hex escapes or “..////.//../” alias

• In principle, can deal with these with implementation care (make sure we fully 

understand the spec)

• Of course, in practice things inevitably fall through the cracks!


• Some are due to imperfect observability

• For instance, if what NIDS sees doesn’t exactly match what arrives at the 

destination

• EG, two copies of the "same" packet, which are actually different and with 

different TTLs

36
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Network-Based Detection

• Issues:

• Scan for “/etc/passwd”?

• What about other sensitive files?

• Scan for “../../”?

• Sometimes seen in legit. requests (= false positive)

• What about “%2e%2e%2f%2e%2e%2f”? (= evasion)

• Okay, need to do full HTTP parsing


• What about “..///.///..////”?

• Okay, need to understand Unix filename semantics too!


• What if it’s HTTPS and not HTTP?

• Need access to decrypted text / session key – yuck!

37
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Host-based Intrusion Detection

• Approach #2: instrument the web server

• Host-based IDS  (sometimes called “HIDS”)

• Scan ?arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../”

38
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Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

4. amazeme.exe? 
profile=xxx

bin/amazeme -p xxx

HIDS instrumentation 
added inside here

6.  Output of bin/amazeme sent back

Structure of 
FooCorp Web Services

39



Computer Science 161 Fall 2017 Weaver

Host-based Intrusion Detection

• Approach #2: instrument the web server

• Host-based IDS  (sometimes called “HIDS”)

• Scan ?arguments sent to back-end programs

• Look for “/etc/passwd” and/or “../../” 


• Pros:

• No problems with HTTP complexities like %-escapes

• Works for encrypted HTTPS!


• Issues:

• Have to add code to each (possibly different) web server

• And that effort only helps with detecting web server attacks


• Still have to consider Unix filename semantics (“..////.//”)

• Still have to consider other sensitive files

40
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Log Analysis

• Approach #3: each night, script runs to analyze log files 
generated by web servers


• Again scan ?arguments sent to back-end programs

41
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Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

bin/amazeme -p xxx

Run Nightly Analysis 
Of Logs Here

Structure of 
FooCorp Web Services

42
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Log Analysis: 
Aka "Log It All and let Splunk Sort It Out"
• Approach #3: each night, script runs to analyze log files generated by web 

servers

• Again scan ?arguments sent to back-end programs


• Pros:

• Cheap: web servers generally already have such logging facilities built into them 

• No problems like %-escapes, encrypted HTTPS


• Issues:

• Again must consider filename tricks, other sensitive files

• Can’t block attacks & prevent from happening

• Detection delayed, so attack damage may compound

• If the attack is a compromise, then malware might be able to alter the logs before they’re analyzed

• (Not a problem for directory traversal information leak example)

• Also can be mitigated by using a separate log server

43
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System Call Monitoring (HIDS)

• Approach #4: monitor system call activity of backend 
processes


• Look for access to /etc/passwd

44
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Internet

Remote client

FooCorp’s  
border router

FooCorp  
Servers

Front-end web server

 5. bin/amazeme -p xxx

Real-time monitoring of 
system calls accessing files

Structure of 
FooCorp Web Services

45
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System Call Monitoring (HIDS)

• Approach #4: monitor system call activity of backend processes

• Look for access to /etc/passwd


• Pros:

• No issues with any HTTP complexities

• May avoid issues with filename tricks

• Attack only leads to an “alert” if attack succeeded

• Sensitive file was indeed accessed


• Issues:

• Maybe other processes make legit accesses to the sensitive files (false positives)

• Maybe we’d like to detect attempts even if they fail?

• “situational awareness”

46
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Detection Accuracy

• Two types of detector errors:

• False positive (FP): alerting about a problem when in fact there was no problem

• False negative (FN): failing to alert about a problem when in fact there was a problem


• Detector accuracy is often assessed in terms of rates at which 
these occur:

• Define Ι to be the event of an instance of intrusive behavior occurring (something we 

want to detect) 

• Define Α to be the event of detector generating alarm


• Define:

• False positive rate = P[Α|¬Ι]

• False negative rate = P[¬Α| Ι]

47
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Perfect Detection

• Is it possible to build a detector for our example with a false 
negative rate of 0%?


• Algorithm to detect bad URLs with 0% FN rate:

void my_detector_that_never_misses(char *URL) 
{  
    printf("yep, it's an attack!\n");  
} 

• In fact, it works for detecting any bad activity with no false negatives!  Woo-hoo!


• Wow, so what about a detector for bad URLs that has NO 
FALSE POSITIVES?!

• printf("nope, not an attack\n");

48
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Detection Tradeoffs

• The art of a good detector is achieving an effective balance 
between FPs and FNs


• Suppose our detector has an FP rate of 0.1% and an FN 
rate of 2%.  Is it good enough?  Which is better, a very low 
FP rate or a very low FN rate?


• Depends on the cost of each type of error …

• E.g., FP might lead to paging a duty officer and consuming hour of their time; FN 

might lead to $10K cleaning up compromised system that was missed

• … but also critically depends on the rate at which actual attacks occur in 

your environment
49
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Base Rate Fallacy

• Suppose our detector has a FP rate of 0.1% (!) 
and a FN rate of 2% (not bad!)


• Scenario #1: our server receives 1,000 URLs/day, and 5 of them are attacks

• Expected # FPs each day = 0.1% * 995 ≈ 1

• Expected # FNs each day = 2% * 5 = 0.1    (< 1/week)

• Pretty good!


• Scenario #2: our server receives 10,000,000 URLs/day, and 5 of them are 
attacks

• Expected # FPs each day ≈ 10,000 :-(


• Nothing changed about the detector; only our environment changed

• Accurate detection very challenging when base rate of activity we want to detect is quite low

50
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Composing Detectors: 
There Is No Free Lunch
• "Hey, what if we take two (bad) detectors and combine 

them?"

• Can we turn that into a good detector?

• Note: Assumes the detectors are independent


• Parallel composition: Either detector triggers an alert

• Reduces false negative rate (either one alerts works)

• Increases false positive rate!


• Series composition: both detectors must trigger for an alert

• Reduces false positive rate (since both must false positive)

• Increases false negative rate!

51
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Styles of Detection: Signature-Based

• Idea: look for activity that matches the structure of a known attack

• Example (from the freeware Snort NIDS):


alert tcp $EXTERNAL_NET any -> $HOME_NET 139 
flow:to_server,established 
content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"  
msg:"EXPLOIT x86 linux samba overflow" 
reference:bugtraq,1816 
reference:cve,CVE-1999-0811 
classtype:attempted-admin 

• Can be at different semantic layers 
e.g.: IP/TCP header fields; packet payload; URLs

52
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Signature-Based Detection

• E.g. for FooCorp, search for “../../” or “/etc/passwd”

• What’s nice about this approach?

• Conceptually simple

• Takes care of known attacks (of which there are zillions)

• Easy to share signatures, build up libraries


• What’s problematic about this approach?

• Blind to novel attacks

• Might even miss variants of known attacks (“..///.//../”)

• Of which there are zillions


• Simpler versions look at low-level syntax, not semantics

• Can lead to weak power (either misses variants, or generates lots of false positives)

53
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Vulnerability Signatures

• Idea: don’t match on known attacks, match on known problems

• Example (also from Snort):


alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80  
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+ 
msg:"Web-IIS ISAPI .ida attempt" 
reference:bugtraq,1816 
reference:cve,CAN-2000-0071 
classtype:attempted-admin 

• That is, match URIs that invoke *.ida?*, have more than 239 bytes of payload, and 
have ACK set (maybe others too)


• This example detects any* attempt to exploit a particular buffer overflow in IIS web 
servers

• Used by the “Code Red” worm

• (Note, signature is not quite complete: also worked for *.idb?*)

54
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Styles of Detection: Anomaly-Based

• Idea: attacks look peculiar.

• High-level approach: develop a model of normal behavior (say 

based on analyzing historical logs).  Flag activity that deviates 
from it.


• FooCorp example: maybe look at distribution of characters in URL 
parameters, learn that some are rare and/or don’t occur repeatedly

• If we happen to learn that ‘.’s have this property, then could detect the attack even 

without knowing it exists


• Big benefit: potential detection of a wide range of attacks, 
including novel ones

55
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Anomaly Detection Problems

• Can fail to detect known attacks

• Can fail to detect novel attacks, if don’t happen to look peculiar 

along measured dimension

• What happens if the historical data you train on includes attacks?

• Base Rate Fallacy particularly acute: if prevalence of attacks is 

low, then you’re more often going to see benign outliers

• High FP rate

• OR: require such a stringent deviation from “normal” that most attacks are missed (high FN 

rate)


• Proves great subject for academic papers but not generally used
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Specification-Based Detection

• Idea: don’t learn what’s normal; specify what’s allowed

• FooCorp example: decide that all URL parameters sent to 

foocorp.com servers must have at most one ‘/’ in them

• Flag any arriving param with > 1 slash as an attack


• What’s nice about this approach?

• Can detect novel attacks

• Can have low false positives

• If FooCorp audits its web pages to make sure they comply 


• What’s problematic about this approach?

• Expensive: lots of labor to derive specifications

• And keep them up to date as things change (“churn”)
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Styles of Detection: Behavioral

• Idea: don’t look for attacks, look for evidence of compromise

• FooCorp example: inspect all output web traffic for any lines that 

match a passwd file

• Example for monitoring user shell keystrokes: 
	unset HISTFILE


• Example for catching code injection: look at sequences of system 
calls, flag any that prior analysis of a given program shows it can’t 
generate

• E.g., observe process executing read(), open(), write(), fork(), exec()    …

• … but there’s no code path in the (original) program that calls those in exactly that order!
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Behavioral-Based Detection

• What’s nice about this approach?

• Can detect a wide range of novel attacks

• Can have low false positives

• Depending on degree to which behavior is distinctive 

• E.g., for system call profiling: no false positives!


• Can be cheap to implement

• E.g., system call profiling can be mechanized


• What’s problematic about this approach?

• Post facto detection: discovers that you definitely have a problem, w/ no opportunity to prevent it

• Brittle: for some behaviors, attacker can maybe avoid it

• Easy enough to not type “unset HISTFILE”

• How could they evade system call profiling?

• Mimicry: adapt injected code to comply w/ allowed call sequences (and can be automated!)
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Summary of Evasion Issues

• Evasions arise from uncertainty (or incompleteness) because detector must 
infer behavior/processing it can’t directly observe

• A general problem any time detection separate from potential target


• One general strategy: impose canonical form (“normalize”)

• E.g., rewrite URLs to expand/remove hex escapes 

• E.g., enforce blog comments to only have certain HTML tags 


• Another strategy: analyze all possible interpretations rather than assuming one

• E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL …


• Another strategy: Flag potential evasions

• So the presence of an ambiguity is at least noted


• Another strategy: fix the basic observation problem

• E.g., monitor directly at end systems 
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Inside a Modern HIDS (“AV”)

• URL/Web access blocking:

• Prevent users from going to known bad locations


• Protocol scanning of network traffic (esp. HTTP)

• Detect & block known attacks

• Detect & block known malware communication


• Payload scanning

• Detect & block known malware

• (Auto-update of signatures for these)


• Cloud queries regarding reputation

• Who else has run this executable and with what results?

• What’s known about the remote host / domain / URL?
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Inside a Modern HIDS

• Sandbox execution

• Run selected executables in constrained/monitored environment

• Analyze:

• System calls

• Changes to files / registry

• Self-modifying code (polymorphism/metamorphism)


• File scanning

• Look for malware that installs itself on disk


• Memory scanning

• Look for malware that never appears on disk


• Runtime analysis

• Apply heuristics/signatures to execution behavior
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Inside a Modern NIDS

• Deployment inside network as well as at border

• Greater visibility, including tracking of user identity


• Full protocol analysis

• Including extraction of complex embedded objects

• In some systems, 100s of known protocols


• Signature analysis (also behavioral)

• Known attacks, malware communication, blacklisted hosts/domains

• Known malicious payloads

• Sequences/patterns of activity


• Shadow execution (e.g., Flash, PDF programs)

• Extensive logging (in support of forensics)

• Auto-update of signatures, blacklists
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NIDS vs. HIDS

• NIDS benefits:

• Can cover a lot of systems with single deployment

• Much simpler management


• Easy to “bolt on” / no need to touch end systems

• Doesn’t consume production resources on end systems

• Harder for an attacker to subvert / less to trust


• HIDS benefits:

• Can have direct access to semantics of activity

• Better positioned to block (prevent) attacks

• Harder to evade


• Can protect against non-network threats

• Visibility into encrypted activity

• Performance scales much more readily (no chokepoint)

• No issues with “dropped” packets
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Key Concepts for Detection

• Signature-based vs anomaly detection 
(blacklisting vs whitelisting)


• Evasion attacks

• Evaluation metrics: False positive rate, false negative rate

• Base rate problem
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Detection vs. Blocking

• If we can detect attacks, how about blocking them?

• Issues:

• Not a possibility for retrospective analysis (e.g., nightly job that looks at logs)

• Quite hard for detector that’s not in the data path

• E.g. How can NIDS that passively monitors traffic block attacks?

• Change firewall rules dynamically; forge RST packets

• And still there’s a race regarding what attacker does before block


• False positives get more expensive

• You don’t just bug an operator, you damage production activity


• Today’s technology/products pretty much all offer blocking

• Intrusion prevention systems (IPS - “eye-pee-ess”)
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Can We Build An IPS 
That Blocks All Attacks? 
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An Alternative Paradigm

• Idea: rather than detect attacks, launch them yourself!

• Vulnerability scanning: use a tool to probe your own systems with a wide range of 

attacks, fix any that succeed

• Pros?

• Accurate: if your scanning tool is good, it finds real problems

• Proactive: can prevent future misuse

• Intelligence: can ignore IDS alarms that you know can’t succeed


• Issues?

• Can take a lot of work

• Not so helpful for systems you can’t modify

• Dangerous for disruptive attacks

• And you might not know which these are …


• In practice, this approach is prudent and widely used today

• Good complement to also running an IDS
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Styles of Detection: Honeypots

• Idea: deploy a sacrificial system that has no operational purpose

• Any access is by definition not authorized …

• … and thus an intruder

• (or some sort of mistake)


• Provides opportunity to:

• Identify intruders

• Study what they’re up to

• Divert them from legitimate targets
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Honeypots

• Real-world example: some hospitals enter fake records with celebrity names …

• … to entrap staff who don’t respect confidentiality


• What’s nice about this approach?

• Can detect all sorts of new threats


• What’s problematic about this approach?

• Can be difficult to lure the attacker

• Can be a lot of work to build a convincing environment

• Note: both of these issues matter less when deploying honeypots for automated attacks

• Because these have more predictable targeting & env. needs

• E.g. “spamtraps”: fake email addresses to catching spambots


• A great honeypot: An unsecured Bitcoin wallet...

• When your bitcoins get stolen, you know you got compromised!
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Forensics

• Vital complement to detecting attacks: figuring out what 
happened in wake of successful attack


• Doing so requires access to rich/extensive logs

• Plus tools for analyzing/understanding them


• It also entails looking for patterns and understanding the 
implications of structure seen in activity


• An iterative process (“peeling the onion”)
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Other Attacks on IDSs

• DoS: exhaust its memory

• IDS has to track ongoing activity

• Attacker generates lots of different forms of activity, consumes all of its memory

• E.g., spoof zillions of distinct TCP SYNs …

• … so IDS must hold zillions of connection records 


• DoS: exhaust its processing

• One sneaky form: algorithmic complexity attacks

• E.g., if IDS uses a predictable hash function to manage connection records …

• … then generate series of hash collisions


• Code injection (!)

• After all, NIDS analyzers take as input network traffic under attacker’s control …

• One of the CS194 projects will be on this topic...
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And, of course,

our monitors have bugs...

73


