
Computer Science 161 Fall 2017 Weaver

RNG & Public Key

1-@MattBlaze

Computer Science 161 Fall 2017 Weaver

Announcements:

• Midterm 1: Sept 25, 5-6:30pm

• Two rooms: 155 Dwinelle and 2050 VLSB

• Which room should you go to?

• Take the last 3 digits of your student ID:

• If more odd than even numbers, 155 Dwinelle

• Otherwise, 2050 VLSB

• DSP students needing extra time etc, use the exam coordination
Piazza folder

• GO! GO GO GO GO GO!!!

• Project 2 will be in Go. We won't release it until at least the 25th

• But start learning Go now.

2

Computer Science 161 Fall 2017 Weaver

But A Lot More Uses for 
Random Numbers...
• The key foundation for all modern cryptographic systems is

often not encryption but these "random" numbers!

• So many times you need to get something random:

• A random cryptographic key

• A random initialization vector

• A "nonce" (use-once item)

• A unique identifier

• Stream Ciphers

• If an attacker can predict a random number things can
catastrophically fail

3

Computer Science 161 Fall 2017 Weaver

Breaking Slot Machines

• Some casinos experienced unusual bad "luck"

• The suspicious players would wait and then all of a sudden

try to play

• The slot machines have predictable pRNG

• Which was based on the current time & a seed

• So play a little...

• With a cellphone watching

• And now you know when to press "spin" to be more likely to

win

• Oh, and this never effected Vegas!

• Evaluation standards for Nevada slot machines specifically

designed to address this sort of issue
4

Computer Science 161 Fall 2017 Weaver

Breaking Bitcoin Wallets

• blockchain.info supports "web wallets"

• Javascript that protects your Bitcoin

• The private key for Bitcoin needs to be
random

• Because otherwise an attacker can spend the money

• An "Improvment" [sic] to the RNG
reduced the entropy (the actual
randomness)

• Any wallet created with this improvment was brute-

forceable and could be stolen

5

Computer Science 161 Fall 2017 Weaver

TRUE Random Numbers

• True random numbers generally require a physical process

• Common circuit is an unusable ring oscillator built into the CPU

• It is then sampled at a low rate to generate true random bits which are then fed into a pRNG on the

CPU

• Other common sources are human  
activity measured at very fine time scales

• Keystroke timing, mouse movements, etc

• "Wiggle the mouse to generate entropy for a key"

• Network/disk activity which is often human driven

• More exotic ones are possible:

• Cloudflare has a wall of lava lamps that are recorded 

by a HD video camera which views the lamps through a  
rotating prism

6

Computer Science 161 Fall 2016 Popa and Weaver

Combining Entropy

• The general procedure is to combine various sources of
entropy

• The goal is to be able to take multiple crappy sources of
entropy

• Measured in how many bits: 
A single flip of a coin is 1 bit of entropy

• And combine into a value where the entropy is the minimum of the sum of all
entropy sources (maxed out by the # of bits in the hash function itself)

• N-1 bad sources and 1 good source -> good pRNG state

7

Computer Science 161 Fall 2016 Popa and Weaver

Pseudo Random Number Generators 
(aka Deterministic Random Bit Generators)
• Unfortunately one needs a lot of random numbers in cryptography

• More than one can generally get by just using the physical entropy source

• Enter the pRNG or DRBG

• If one knows the state it is entirely predictable

• If one doesn't know the state it should be indistinguishable from a random string

• Three operations

• Instantiate: (aka Seed) Set the internal state based on the real entropy sources

• Reseed: Update the internal state based on both the previous state and additional entropy

• The big different from a simple stream cipher

• Generate: Generate a series of random bits based on the internal state

• Generate can also optionally add in additional entropy

• instantiate(entropy)  
reseed(entropy) 
generate(bits, {optional entropy})

8

Computer Science 161 Fall 2016 Popa and Weaver

Properties for the pRNG

• Can a pRNG be truly random?

• No. For seed length s, it can only generate at most 2s distinct possible

sequences.

• A cryptographically strong pRNG “looks” truly random to
an attacker

• Attacker cannot distinguish it from a random sequence

9

Computer Science 161 Fall 2016 Popa and Weaver

Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state

• It is this predictability which is why its called "pseudo"

• If the attacker does not know the internal state

• The attacker should not be able to distinguish a truly random string from one

generated by the pRNG

• It should also be rollback-resistant

• Even if the attacker finds out the state at time T, they should not be able to

determine what the state was at T-1

• More precisely, if presented with two random strings, one truly random and one

generated by the pRNG at time T-1, the attacker should not be able to distinguish
between the two

10

Computer Science 161 Fall 2016 Popa and Weaver

Why "Rollback Resistance" is Essential

• Assume attacker, at time T, is able to obtain all the internal state of
the pRNG

• How? E.g. the pRNG screwed up and instead of an IV, released the internal state, or

the pRNG is bad...

• Attacker observes how the pRNG was used

• T-1 = Session key 

T0 = Nonce

• Now if the pRNG doesn't resist 
rollback, and the attacker gets the  
state at T0, attacker can know the  
session key! And we are back to...

11

Computer Science 161 Fall 2016 Popa and Weaver

More on Seeding and Reseeding

• Seeding should take all the different physical entropy
sources available

• If one source has 0 entropy, it must not reduce the entropy of the seed

• We can shove a whole bunch of low-entropy sources together and create a

high-entropy seed

• Reseeding adds in even more entropy

• F(internal_state, new material)
• Again, even if reseeding with 0 entropy, it must not reduce the entropy of the

seed

• Entropy (most of the time) needs to be confidential
12

Computer Science 161 Fall 2016 Popa and Weaver

Probably the best pRNG/DRBG: 
HMAC_DRBG
• Generally believed to be the best

• Accept no substitutes!

• Two internal state registers, V and K

• Each the same size as the hash function's output

• V is used as (part of) the data input into HMAC, while K is the
key

• If you can break this pRNG you can either break the underlying
hash function or break a significant assumption about how
HMAC works

• Yes, security proofs sometimes are a very good thing and actually do work

13

Computer Science 161 Fall 2016 Popa and Weaver

HMAC_DRBG 
Generate
• The basic generation function

• Remarks:

• It requires one HMAC call per blocksize-bits of state

• Then two more HMAC calls to update the internal

state

• Prediction resistance:

• If you can distinguish new K from random when you

don't know old K: 
You've distinguished HMAC from a random function! 
Which means you've either broken the hash or the
HMAC construction

• Rollback resistance:

• If you can learn old K from new K and V: 

You've reversed the hash function!
14

function hmac_drbg_generate (state, n) {
 tmp = ""
 while(len(tmp) < N){
 state.v = hmac(state.k,state.v)
 tmp = tmp || state.v
 }
 // Update state w no input
 state.k = hmac(state.k, state.v || 0x00)
 state.v = hmac(state.k, state.v)
 // Return the first N bits of tmp
 return tmp[0:N]
}

Computer Science 161 Fall 2016 Popa and Weaver

HMAC_DRBG 
Update
• Used instead of the "no-input

update" when you have additional
entropy on the generate call

• Used standalone for both
instantiate (state.k = state.v = 0)
and reseed

• Designed so that even if the
attacker controls the input but
doesn't know k:

• The attacker should not be able to predict

the new k
15

function hmac_drbg_update (state, input) {
 state.k = hmac(state.k, state.v || 0x00
 || input)
 state.v = hmac(state.k, state.v)
 state.k = hmac(state.k, state.v || 0x01
 || input)
 state.v = hmac(state.k, state.v)
}

Computer Science 161 Fall 2017 Weaver

Stream ciphers

• Block cipher: fixed-size, stateless, requires “modes” to
securely process longer messages

• Stream cipher: keeps state from processing past message
elements, can continually process new elements

• Common approach: “one-time pad on the cheap”:

• XORs the plaintext with some “random” bits

• But: random bits ≠ the key (as in one-time pad)

• Instead: output from cryptographically strong pseudorandom number generator

(pRNG)

• Anyone who actually calls this a "One Time Pad" is selling snake oil!

16

Computer Science 161 Fall 2017 Weaver

Building Stream Ciphers

• Encryption, given key K and message M:

• Choose a random value IV

• E(M, K) = pRNG(K, IV) ⊕ M

• Decryption, given key K, ciphertext C, and initialization vector IV:

• D(C, K) = PRNG(K, IV) ⊕ C

• Can encrypt message of any length 
because pRNG can produce any  
number of random bits...

• But in practice, for an n-bit seed pRNG,  

stop at 2n/2. Because, of course...
17

Computer Science 161 Fall 2017 Weaver

18

Mi

(Small) K, IV

PRNG

Keystream

⨁

Mi: ith message
of plaintext

(Small) K, IV

PRNG

Keystream

⨁
Ci

Alice Bob

Using a PRNG to Build a
Stream Cipher

Computer Science 161 Fall 2017 Weaver

CTR mode is (mostly) a stream cipher

• E(ctr,K) should look like a series of pseudo random
numbers...

• But after a large amount it is slightly distinguishable!

• Since it is actually a pseudo-random permutation...

• For a cipher using 128b blocks, you will never get the same 128b number until

you go all the way through the 2128 possible entries on the counter

• Reason why you want to stop after 264

• if you are foolish enough to use CTR mode in the first place

• Also very minor information leakage:

• If Ci = Cj, for i != j, it follows that Mi != Mj

19

Computer Science 161 Fall 2016 Popa and Weaver

UUID: Universally Unique Identifiers

• You got to have a "name" for something...

• EG, to store a location in a filesystem

• Your name must be unique...

• And your name must be unpredictable!

• Just chose a random value!

• UUID: just chose a 128b random value

• Well, it ends up being a 122b random value with some signaling information

• A good UUID library uses a cryptographically-secure pRNG that is properly seeded

• Often written out in hex as:

• 00112233-4455-6677-8899-aabbccddeeff

20

Computer Science 161 Fall 2016 Popa and Weaver

What Happens When The Random Numbers 
Goes Wrong...
• Insufficient Entropy:

• Random number generator is seeded without enough entropy

• Debian OpenSSL CVE-2008-0166

• In "cleaning up" OpenSSL (Debian 'bug' #363516), the author 'fixed'

how OpenSSL seeds random numbers

• Because the code, as written, caused Purify and Valgrind to complain about

reading uninitialized memory

• Unfortunate cleanup reduced the pRNG's seed to be just the process

ID

• So the pRNG would only start at one of ~30,000 starting points

• This made it easy to find private keys

• Simply set to each possible starting point and generate a few private

keys

• See if you then find the corresponding public keys anywhere on the

Internet
21

http://blog.dieweltistgarnichtso.net/Caprica,-2-years-ago

Computer Science 161 Fall 2016 Popa and Weaver

And Now Lets 
Add Some RNG Sabotage...
• The Dual_EC_DRBG

• A pRNG pushed by the NSA behind the scenes based on Elliptic Curves

• It relies on two parameters, P and Q on an elliptic curve

• The person who generates P and selects Q=eP can predict the random number

generator, regardless of the internal state

• It also sucked!

• It was horribly slow and even had subtle biases that shouldn't exist in a pRNG: 

You could distinguish the upper bits from random!

• Now this was spotted fairly early on...

• Why should anyone use such a horrible random number generator?

22

Computer Science 161 Fall 2016 Popa and Weaver

Well, anyone not paid that is...

• RSA Data Security accepted 30 pieces of silver  
$10M from the NSA to implement Dual_EC in their  
RSA BSAFE library

• And silently make it the default pRNG

• Using RSA's support, it became a NIST standard

• And inserted into other products...

• And then the Snowden revelations

• The initial discussion of this sabotage in the  

NY Times just vaguely referred to a Crypto  
talk given by Microsoft people...

• That everybody quickly realized referred to Dual_EC
23

Computer Science 161 Fall 2016 Popa and Weaver

But this is insanely powerful...

• It isn't just forward prediction but being able to run the generator backwards!

• Which is why Dual_EC is so nasty:  

Even if you know the internal state of HMAC_DRBG it has rollback resistance!

• In TLS (HTTPS) and Virtual Private Networks you have a motif of:

• Generate a random session key

• Generate some other random data that's  

public visible

• EG, the IV in the encrypted channel, or the "random"  

nonce in TLS

• Oh, and an NSA sponsored "standard" to spit out even more 

"random" bits!

• If you can run the random number 
generator backwards, you can find the  
session key

24

Computer Science 161 Fall 2016 Popa and Weaver

It Got Worse: 
Sabotaging Juniper
• Juniper also used Dual_EC in their Virtual Private Networks

• "But we did it safely, we used a different Q"

• Sometime later, someone else noticed this...

• "Hmm, P and Q are the keys to the backdoor... 

Lets just hack Juniper and rekey the lock!"

• And whoever put in the first Dual_EC then went "Oh crap, we got locked out but we can't do anything about it!"

• Sometime later, someone else goes...

• "Hey, lets add an ssh backdoor"

• Sometime later, Juniper goes

• "Whoops, someone added an ssh backdoor, lets see  

what else got F'ed with, oh, this # in the pRNG"

• And then everyone else went

• "Ohh, patch for a backdoor. Lets see what got fixed.  

Oh, these look like Dual_EC parameters..."
25

Computer Science 161 Fall 2016 Popa and Weaver

Sabotaging "Magic Numbers" 
In General
• Many cryptographic implementations depend on "magic" numbers

• Parameters of an Elliptic curve

• Magic points like P and Q

• Particular prime p for Diffie/Hellman

• The content of S-boxes in block cyphers

• Good systems should cleanly  
describe how they are generated

• In some sound manner (e.g. AES's S-boxes)

• In some "random" manner defined by a pRNG with a specific seed

• Eg, seeded with "Nicholas Weaver Deserves Perfect Student Reviews"... 

Needs to be very low entropy so the designer can't try a gazillion seeds
26

Computer Science 161 Fall 2016 Popa and Weaver

Because Otherwise You 
Have Trouble...
• Not only Dual-EC's P and Q

• Recent work: 1024b Diffie/Hellman moderately impractical...

• But you can create a sabotaged prime that is 1/1,000,000 the work to crack! 

And the most often used "example" p's origin is lost in time!

• It can cast doubt even when a design is solid:

• The DES standard was developed by IBM but with input from the NSA

• Everyone was suspicious about the NSA tampering with the S-boxes...

• They did: The NSA made them stronger against 

an attack they knew but the public didn't

• The NSA-defined elliptic curves P-256 and P-384

• I trust them because they are in Suite-B/CNSA so the  

NSA uses them for TS communication: 
A backdoor here would be absolutely unacceptable... 
but only because I actually believe the NSA wouldn't go 
and try to shoot itself in the head!

27

Computer Science 161 Fall 2017 Weaver

So Far...

• We have symmetric key encryption...

• But that requires Alice and Bob knowing a key in advance

• We have symmetric integrity with MACs...

• But anyone who can verify the integrity can also modify the message

• Goal of public key is to change that

• Allows creation of a symmetric key in the presence of an adversary

• Allows creation of a message to Alice by anybody but only Alice can decrypt

• Allows creation of a message exclusively by Alice than anybody can verify

28

Computer Science 161 Fall 2017 Weaver

Our Roadmap...

• Public Key:

• Something everyone can know

• Private Key:

• The secret belonging to a specific person

• Diffie/Hellman:

• Provides key exchange with no pre-shared secret

• ElGamal & RSA:

• Provide a message to a recipient only knowing the recipient's public key

• DSA & RSA signatures:

• Provide a message that anyone can prove was generated with a private key

29

Computer Science 161 Fall 2017 Weaver

Diffie-Hellman Key Exchange

• What if instead they can somehow generate a random key when
needed?

• Seems impossible in the presence of Eve observing all of their
communication …

• How can they exchange a key without her learning it?

• But: actually is possible using public-key technology

• Requires that Alice & Bob know that their messages will reach one another without any

meddling

• Protocol: Diffie-Hellman Key Exchange (DHE)

• The E is "Ephemeral", we use this to create a temporary key for other uses and then

forget about it
30

Computer Science 161 Fall 2017 Weaver

Diffie-Hellman Key Exchange

31

Alice Bob

Eve

1. Everyone	agrees	in	advance	on	a	
well-known	(large)	prime	p	and	a	
corresponding	g:	1	<	g	<	p-1

p, g

p, g

p, g

Computer Science 161 Fall 2017 Weaver

DHE

32

Alice Bob

Eve

2. Alice	picks	random	secret	‘a’:	1	<	a	<	p-1 

3. Bob	picks	random	secret	‘b’:	1	<	b	<	p-1

p, g

p, g

p, g

a b

a? b?

Computer Science 161 Fall 2017 Weaver

DHE

33

Alice Bob

Eve

4. Alice	sends	A	=	ga	mod	p	to	Bob	

5. Bob	sends	B	=	gb	mod	p	to	Alice  
 
Eve	sees	these

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B

Computer Science 161 Fall 2017 Weaver

DHE

34

Alice Bob

Eve

6. Alice	knows	{a,	A,	B},	computes	
K	=	Ba	mod	p	=	(gb)a	=	gba	mod	p

7. Bob	knows	{b,	A,	B},	computes	K	
=	Ab	mod	p	=	(ga)b	=	gab	mod	p

8. K	is	now	the	shared	secret	key.

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B

A
B

K K

Computer Science 161 Fall 2017 Weaver

DHE

35

Alice Bob

Evep, g

p, g

p, g

a b

a? b?
A
B

K K

While	Eve	knows	{p,	g,	ga	mod	p,	gb	mod	p},	believed	to	be	
computationally	infeasible	for	her	to	then	deduce	K	=	gab	mod	p.

She	can	easily	construct	A·B	=	ga·gb	mod	p	=	ga+b	mod	p.	  
But	computing	gab	requires	ability	to	take	discrete	logarithms	mod	p.

Computer Science 161 Fall 2017 Weaver

Diffie Hellman is part of more generic problem

• This involved deep mathematical voodoo called "Group
Theory"

• Its actually done under a group G

• Two main groups of note:

• Numbers mod p with generator g

• Point addition in an elliptic curve C

• Usually identified by number, eg. p256, p384 (NSA-developed curves) or  

Curve25519 (developed by Dan Bernstein, also 256b long)

• So EC (Elliptic Curve) == different group

• Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE

36

Computer Science 161 Fall 2017 Weaver

This is Ephemeral Diffie/Hellman

• K = gab mod p is used as the basis for a "session key"

• A symmetric key used to protect subsequent communication between Alice

and Bob

• In general, public key operations are vastly more expensive than symmetric key, so it

is mostly used just to agree on secret keys, transmit secret keys, or sign hashes

• If either a or b is random, K is random

• When Alice and Bob are done, they discard K, a, b

• This provides forward secrecy: Alice and Bob don't retain any information

that a later attacker who can compromise Alice or Bob's secrets could use to
decrypt the messages exchanged with K.

37

Computer Science 161 Fall 2017 Weaver

But Its Not That Simple

• What if Alice and Bob aren't facing a passive eavesdropper

• But instead are facing Mallory, an active Man-in-the-Middle

• Mallory has the ability to change messages:

• Can remove messages and add his own

• Lets see... Do you think DHE will still work as-is?

38

Computer Science 161 Fall 2017 Weaver

Attacking DHE

as a MitM

39

Alice Bob

p, g

p, g

p, g
Mallory

What	happens	if	instead	of	Eve	
watching,	Alice	&	Bob	face	the	
threat	of	a	hidden	Mallory	(MITM)?

Computer Science 161 Fall 2017 Weaver

The MitM 
Key Exchange

40

Alice Bob

p, g

p, g

p, g
Mallory

2. Alice	picks	random	secret	‘a’:	1	<	a	<	p-1 

3. Bob	picks	random	secret	‘b’:	1	<	b	<	p-1

a b

a? b?

Computer Science 161 Fall 2017 Weaver

41

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

4. Alice	sends	A	=	ga	mod	p	to	Bob	

5. Mallory	prevents	Bob	from	
receiving	A

A = ga mod pA

A

Computer Science 161 Fall 2017 Weaver

42

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

6. Mallory	generates	her	own	a',	b'

7. Mallory	sends	A'	=	ga'	mod	p	to	Bob

A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'

Computer Science 161 Fall 2017 Weaver

43

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The	same	happens	for	Bob	and	B/B'
A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

Computer Science 161 Fall 2017 Weaver

44

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The	same	happens	for	Bob	and	B/B'

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B’ = gb' mod pB'

Computer Science 161 Fall 2017 Weaver

45

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

9. Alice	and	Bob	now	compute	keys	they	share	with	…	Mallory!

10. Mallory	can	relay	encrypted	traffic	between	the	two	...

10'.	Modifying	it	or	making	stuff	up	however	she	wishes

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B' = gb' mod p
B'

K'1	=	(B')a	mod	p  
						=	(gb')a	=	gb'a	mod	p

K'2	=	(A')b	mod	p  
						=	(ga')b	=	ga'b	mod	p

K'1	=	Ab'	mod	p	=	gab'	mod	p
K'2	=	Ba'	mod	p	=	gba'	mod	p

Computer Science 161 Fall 2017 Weaver

So We Will Want 
More...
• This is online:

• Alice and Bob actually need to be active for this to work...

• So we want offline encryption:

• Bob can send a message to Alice that Alice can read at a later date

• And authentication:

• Alice can publish a message that Bob can verify was created by Alice later

• Can also be used as a building-block for eliminating the MitM in the DHE key

exchange: 
Alice authenticates A, Bob verifies that he receives A not A'.

46

Computer Science 161 Fall 2017 Weaver

Public Key Cryptography #1: 
RSA
• Alice generates two large primes, p and q

• They should be generated randomly: 

Generate a large random number and then use a "primality test": 
A probabilistic algorithm that checks if the number is prime

• Alice then computes n = p*q and φ(n) = (p-1)(q-1)
• φ(n) is Euler's totient function, in this case for a composite of two primes

• Chose random 2 < e < φ(n)

• e also needs to be relatively prime to φ(n) but it can be small

• Solve for d = e-1 mod φ(n)
• You can't solve for d without knowing φ(n), which requires knowing p and q

• n, e are public, d, p, q, and φ(n) are secret
47

Computer Science 161 Fall 2017 Weaver

RSA Encryption

• Bob can easily send a message m to Alice:

• Bob computes c = me mod n

• Without knowing d, it is believed to be intractable to compute m given c, e,

and n

• But if you can get p and q, you can get d: 

It is not known if there is a way to compute d without also being able to factor n,  
but it is known that if you can factor n, you can get d.

• And factoring is believed to be hard to do

• Alice computes m = cd mod n = med mod n

• Time for some math magic...

48

Computer Science 161 Fall 2017 Weaver

RSA Encryption/Decryption, con’t

• So we have: D(C, KD) = (Me∙d) mod n

• Now recall that d is the multiplicative inverse of e, modulo φ(n), and

thus: 
	e∙d = 1 mod φ(n) (by definition) 
	e∙d - 1 = k∙φ(n) for some k

• Therefore D(C, KD) = Me∙d mod n = (Me∙d-1)∙M mod n

=(Mkφ(n))∙M mod n
=[(Mφ(n))k]∙M mod n
=(1k)∙M mod n by Euler’s Theorem: aφ(n) mod n = 1

=M mod n = M

49(believed) Eve can recover M from C iff Eve can factor n=p·q

Computer Science 161 Fall 2017 Weaver

But It Is Not That Simple...

• What if Bob wants to send the same message to Alice twice?

• Sends mea mod na and then mea mod na

• Oops, not IND-CPA!

• What if Bob wants to send a message to Alice, Carol, and Dave:

• mea mod na 

meb mod nb 
mec mod nc

• This ends up leaking information an  
eavesdropper can use especially if 3 = ea = eb = ec !

• Oh, and problems if both e and m are small...

• As a result, you can not just use plain RSA:

• You need to use a "padding" scheme that makes the  

input random but reversible
50

Computer Science 161 Fall 2017 Weaver

RSA-OAEP  
(Optimal asymmetric encryption padding)
• A way of processing m with a hash function & random

bits

• Effectively "encrypts" m replacing it with X = [m,0...] ⨁ G(r)

• G and H are hash functions (EG SHA-256) 

k0 = # of bits of randomness, len(m) + k1 + k0 = n

• Then replaces r with Y = H(G(r) ⨁ [m,0...]) ⨁ R

• This structure is called a "Feistel network":

• It is always designed to be reversible. 

Many block ciphers are based on this concept applied multiple times with G
and H being functions of k rather than just fixed operations

• This is more than just block-cipher padding (which
involves just adding simple patterns)

• Instead it serves to both pad the bits and make the data to be

encrypted "random"
51

Computer Science 161 Fall 2017 Weaver

But Its Not That Simple... 
Timing Attacks
• Using normal math, the time it takes for

Alice to decrypt c depends on c and d

• Ruh roh, this can leak information...

• More complex RSA implementations take advantage of

knowing p and q directly... 
but also leak timing

• People have used this to guess and then
check the bits of q on OpenSSL

• http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

• And even more subtle things are possible...

52

 x = C
 for j = 1 to n
 x = mod(x2, N)
 if dj == 1 then
 x = mod(xC, N)
 end if
 next j
 return x

Computer Science 161 Fall 2017 Weaver

So How to Find Bob's Key?

• Lots of stuff later, but for now... 
The Leap of Faith!

• Alice wants to talk to Bob:

• "Hey, Bob, tell me your public key!"

• Now on all subsequent times...

• "Hey, Bob, tell me your public key", and check to see if it is different from what

Alice remembers

• Works assuming the first time Alice talks to Bob there isn't a
Man-in-the-Middle

• ssh uses this

53

Computer Science 161 Fall 2017 Weaver

RSA Signatures...

• Alice computes a hash of the message H(m)
• Alice then computes s = (H(m))d mod n

• Anyone can then verify

• v = se mod m = ((H(m))d)e mod n = H(m)

• Once again, there are "F-U"s...

• Have to use a proper encoding scheme to do 

this properly and all sort of other traps

• One particular trap: a scenario where 

the attacker can get Alice to repeatedly 
sign things (an "oracle")

54

Computer Science 161 Fall 2017 Weaver

But Signatures Are 
Super Valuable...
• They are how we can prevent a MitM!

• If Bob knows Alice's key, and Alice knows Bob's...

• How will be "next time"

• Alice doesn't just send a message to Bob...

• But creates a random key k...

• Sends E(M,Ksess), E(Ksess,Bpub), S(H(M),Apriv)

• Only Bob can decrypt the message, and Bob can verify the
message came from Alice

• So Mallory is SOL!
55

Computer Science 161 Fall 2017 Weaver

RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?

• RSA isn't particularly compact or efficient: dealing with 2000b (comfortably

secure) or 3000b (NSA-paranoia) bit operations

• Can we get away with fewer bits?

• Well, Diffie-Hellman isn't any better...

• But elliptic curve Diffie-Hellman is

• RSA also had some patent issues

• So an attempt to build public key algorithms around the Diffie-Hellman

problem

56

Computer Science 161 Fall 2017 Weaver

El-Gamal

• Just like Diffie-Hellman...

• Select p and g

• These are public and can be shared

• Alice choses x randomly as her private key

• And publishes h = gx mod p as her public key

• Bob, to encrypt m to Alice...

• Selects a random y, calculates c1 = gy mod p, s = hy mod p = gxy mod p

• s becomes a shared secret between Alice and Bob

• Maps message m to create m', calculates c2 = m' * s mod p

• Bob then sends {c1, c2}
57

Computer Science 161 Fall 2017 Weaver

El-Gamal Decryption

• Alice first calculates s = c1x mod p

• Then Alice calculates m' = c2 * s-1 mod p
• Then Alice calculates the inverse of the mapping to get m

• Of course, there are problems...

• Attacker can always change m' to 2m'

• What if Bob screws up and reuses y?

• c2 = m1' * s mod p 

c2' = m2' * s mod p
• Ruh roh, this leaks information: 

c2 / c2' = m1' / m2'
• So if you know m1...

58

Computer Science 161 Fall 2017 Weaver

DSA Signatures...

• Again, based on Diffie-Hellman

• Two initial parameters, L and N, and a hash function H

• L == key length, eg 2048 

N <= len(H), e.g. 256
• An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and  

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)

• {p, q, g} are public parameters

• Alice creates her own random private key x < q

• Public key y = gx mod p

59

Computer Science 161 Fall 2017 Weaver

Alice's Signature...

• Create a random value k < q

• Calculate r = (gk mod p) mod q
• If r = 0, start again

• Calculate s = k-1 (H(m) + xr) mod q

• If s = 0, start again

• Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller signatures)

• Verification

• w = s-1 mod q
• u1 = H(m) * w mod q
• u2 = r * w mod q
• v = (gu1yu2 mod p) mod q
• Validate that v = r

60

Computer Science 161 Fall 2017 Weaver

But Easy To Screw Up...

• k is not just a nonce... It must be random and secret

• If you know k, you can calculate x

• And even if you just reuse a random k... 
for two signatures sa and sb

• A bit of algebra proves that k = (HA – HB) / (sa – sb)

• A good reference:

• How knowing k tells you x: 

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

• How two signatures tells you k: 

https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/

61

Computer Science 161 Fall 2017 Weaver

And NOT theoretical: 
Sony Playstation 3 DRM
• The PS3 was designed to only run signed

code

• They used ECDSA as the signature algorithm

• This prevents unauthorized code from running

• They had an option to run alternate operating systems

(Linux) that they then removed

• Of course this was catnip to reverse
engineers

• Best way to get people interested: 

remove Linux from a device...

• It turns for out one of the key authentication
keys used to sign the firmware...

• Ended up reusing the same k for multiple signatures!

62

Computer Science 161 Fall 2017 Weaver

And NOT Theoretical: 
Android RNG Bug + Bitcoin
• OS Vulnerability in 2013 

Android "SecureRandom" wasn't actually secure!

• Not only was it low entropy, it would occasionally return the same

value multiple times

• Multiple Bitcoin wallet apps on Android were
affected

• "Pay B Bitcoin to Bob" is signed by Alice's public key using ECDSA

• Message is broadcast publicly for all to see

• So you'd have cases where "Pay B to Bob" and  
"Pay C to Carol" were signed with the same k

• So of course someone scanned for all such  
Bitcoin transactions

63

