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Announcements:

• Midterm 1: Sept 25, 5-6:30pm

• Two rooms: 155 Dwinelle and 2050 VLSB


• Which room should you go to?

• Take the last 3 digits of your student ID:

• If more odd than even numbers, 155 Dwinelle

• Otherwise, 2050 VLSB


• DSP students needing extra time etc, use the exam coordination 
Piazza folder


• GO!  GO GO GO GO GO!!!

• Project 2 will be in Go.  We won't release it until at least the 25th

• But start learning Go now.
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But A Lot More Uses for 
Random Numbers...
• The key foundation for all modern cryptographic systems is 

often not encryption but these "random" numbers!

• So many times you need to get something random:

• A random cryptographic key

• A random initialization vector

• A "nonce" (use-once item)

• A unique identifier

• Stream Ciphers


• If an attacker can predict a random number things can 
catastrophically fail
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Breaking Slot Machines

• Some casinos experienced unusual bad "luck"

• The suspicious players would wait and then all of a sudden 

try to play


• The slot machines have predictable pRNG

• Which was based on the current time & a seed


• So play a little...

• With a cellphone watching

• And now you know when to press "spin" to be more likely to 

win


• Oh, and this never effected Vegas!

• Evaluation standards for Nevada slot machines specifically 

designed to address this sort of issue
4
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Breaking Bitcoin Wallets

• blockchain.info supports "web wallets"

• Javascript that protects your Bitcoin


• The private key for Bitcoin needs to be 
random

• Because otherwise an attacker can spend the money


• An "Improvment" [sic] to the RNG 
reduced the entropy (the actual 
randomness)

• Any wallet created with this improvment was brute-

forceable and could be stolen
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TRUE Random Numbers

• True random numbers generally require a physical process

• Common circuit is an unusable ring oscillator built into the CPU

• It is then sampled at a low rate to generate true random bits which are then fed into a pRNG on the 

CPU


• Other common sources are human  
activity measured at very fine time scales

• Keystroke timing, mouse movements, etc

• "Wiggle the mouse to generate entropy for a key"


• Network/disk activity which is often human driven


• More exotic ones are possible:

• Cloudflare has a wall of lava lamps that are recorded 

by a HD video camera which views the lamps through a  
rotating prism
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Combining Entropy

• The general procedure is to combine various sources of 
entropy


• The goal is to be able to take multiple crappy sources of 
entropy


• Measured in how many bits: 
A single flip of a coin is 1 bit of entropy


• And combine into a value where the entropy is the minimum of the sum of all 
entropy sources (maxed out by the # of bits in the hash function itself)


• N-1 bad sources and 1 good source -> good pRNG state
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Pseudo Random Number Generators 
(aka Deterministic Random Bit Generators)
• Unfortunately one needs a lot of random numbers in cryptography

• More than one can generally get by just using the physical entropy source


• Enter the pRNG or DRBG

• If one knows the state it is entirely predictable

• If one doesn't know the state it should be indistinguishable from a random string


• Three operations

• Instantiate: (aka Seed) Set the internal state based on the real entropy sources

• Reseed: Update the internal state based on both the previous state and additional entropy

• The big different from a simple stream cipher


• Generate: Generate a series of random bits based on the internal state

• Generate can also optionally add in additional entropy


• instantiate(entropy)  
reseed(entropy) 
generate(bits, {optional entropy})
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Properties for the pRNG

• Can a pRNG be truly random?

• No.  For seed length s, it can only generate at most 2s distinct possible 

sequences.


• A cryptographically strong pRNG “looks” truly random to 
an attacker


• Attacker cannot distinguish it from a random sequence
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Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state

• It is this predictability which is why its called "pseudo"


• If the attacker does not know the internal state

• The attacker should not be able to distinguish a truly random string from one 

generated by the pRNG


• It should also be rollback-resistant

• Even if the attacker finds out the state at time T, they should not be able to 

determine what the state was at T-1

• More precisely, if presented with two random strings, one truly random and one 

generated by the pRNG at time T-1, the attacker should not be able to distinguish 
between the two
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Why "Rollback Resistance" is Essential

• Assume attacker, at time T, is able to obtain all the internal state of 
the pRNG

• How?  E.g. the pRNG screwed up and instead of an IV, released the internal state, or 

the pRNG is bad...


• Attacker observes how the pRNG was used

• T-1 = Session key 

T0 = Nonce


• Now if the pRNG doesn't resist 
rollback, and the attacker gets the  
state at T0, attacker can know the  
session key!  And we are back to...
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More on Seeding and Reseeding

• Seeding should take all the different physical entropy 
sources available


• If one source has 0 entropy, it must not reduce the entropy of the seed

• We can shove a whole bunch of low-entropy sources together and create a 

high-entropy seed


• Reseeding adds in even more entropy

• F(internal_state, new material) 
• Again, even if reseeding with 0 entropy, it must not reduce the entropy of the 

seed


• Entropy (most of the time) needs to be confidential
12
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Probably the best pRNG/DRBG: 
HMAC_DRBG
• Generally believed to be the best

• Accept no substitutes!


• Two internal state registers, V and K

• Each the same size as the hash function's output


• V is used as (part of) the data input into HMAC, while K is the 
key


• If you can break this pRNG you can either break the underlying 
hash function or break a significant assumption about how 
HMAC works

• Yes, security proofs sometimes are a very good thing and actually do work
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HMAC_DRBG 
Generate
• The basic generation function

• Remarks:

• It requires one HMAC call per blocksize-bits of state

• Then two more HMAC calls to update the internal 

state


• Prediction resistance:

• If you can distinguish new K from random when you 

don't know old K: 
You've distinguished HMAC from a random function! 
Which means you've either broken the hash or the 
HMAC construction


• Rollback resistance:

• If you can learn old K from new K and V: 

You've reversed the hash function!
14

function hmac_drbg_generate (state, n) { 
  tmp = "" 
  while(len(tmp) < N){ 
     state.v = hmac(state.k,state.v) 
     tmp = tmp || state.v 
  } 
  // Update state w no input 
  state.k = hmac(state.k, state.v || 0x00) 
  state.v = hmac(state.k, state.v) 
  // Return the first N bits of tmp 
  return tmp[0:N] 
} 
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HMAC_DRBG 
Update
• Used instead of the "no-input 

update" when you have additional 
entropy on the generate call


• Used standalone for both 
instantiate (state.k = state.v = 0) 
and reseed


• Designed so that even if the 
attacker controls the input but 
doesn't know k:

• The attacker should not be able to predict 

the new k 
15

function hmac_drbg_update (state, input) { 
  state.k = hmac(state.k, state.v || 0x00 
                          || input) 
  state.v = hmac(state.k, state.v) 
  state.k = hmac(state.k, state.v || 0x01 
                          || input) 
  state.v = hmac(state.k, state.v) 
} 
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Stream ciphers

• Block cipher: fixed-size, stateless, requires “modes” to 
securely process longer messages


• Stream cipher: keeps state from processing past message 
elements, can continually process new elements


• Common approach: “one-time pad on the cheap”: 

• XORs the plaintext with some “random” bits


• But: random bits ≠ the key (as in one-time pad)

• Instead: output from cryptographically strong pseudorandom number generator 

(pRNG)

• Anyone who actually calls this a "One Time Pad" is selling snake oil!

16
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Building Stream Ciphers

• Encryption, given key K and message M:

• Choose a random value IV

• E(M, K) = pRNG(K, IV) ⊕ M 

• Decryption, given key K, ciphertext C, and initialization vector IV:

• D(C, K) = PRNG(K, IV) ⊕ C 

• Can encrypt message of any length 
because pRNG can produce any  
number of random bits...

• But in practice, for an n-bit seed pRNG,  

stop at 2n/2.  Because, of course...
17
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CTR mode is (mostly) a stream cipher

• E(ctr,K) should look like a series of pseudo random 
numbers...

• But after a large amount it is slightly distinguishable!


• Since it is actually a pseudo-random permutation...

• For a cipher using 128b blocks, you will never get the same 128b number until 

you go all the way through the 2128 possible entries on the counter

• Reason why you want to stop after 264

• if you are foolish enough to use CTR mode in the first place


• Also very minor information leakage:

• If Ci = Cj, for i != j, it follows that Mi != Mj

19
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UUID: Universally Unique Identifiers

• You got to have a "name" for something...

• EG, to store a location in a filesystem


• Your name must be unique...

• And your name must be unpredictable!


• Just chose a random value!

• UUID: just chose a 128b random value

• Well, it ends up being a 122b random value with some signaling information


• A good UUID library uses a cryptographically-secure pRNG that is properly seeded


• Often written out in hex as:

• 00112233-4455-6677-8899-aabbccddeeff

20
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What Happens When The Random Numbers 
Goes Wrong...
• Insufficient Entropy:

• Random number generator is seeded without enough entropy


• Debian OpenSSL CVE-2008-0166

• In "cleaning up" OpenSSL (Debian 'bug' #363516), the author 'fixed' 

how OpenSSL seeds random numbers

• Because the code, as written, caused Purify and Valgrind to complain about 

reading uninitialized memory

• Unfortunate cleanup reduced the pRNG's seed to be just the process 

ID

• So the pRNG would only start at one of ~30,000 starting points


• This made it easy to find private keys

• Simply set to each possible starting point and generate a few private 

keys

• See if you then find the corresponding public keys anywhere on the 

Internet
21
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And Now Lets 
Add Some RNG Sabotage...
• The Dual_EC_DRBG

• A pRNG pushed by the NSA behind the scenes based on Elliptic Curves


• It relies on two parameters, P and Q on an elliptic curve

• The person who generates P and selects Q=eP can predict the random number 

generator, regardless of the internal state


• It also sucked!

• It was horribly slow and even had subtle biases that shouldn't exist in a pRNG: 

You could distinguish the upper bits from random!


• Now this was spotted fairly early on...

• Why should anyone use such a horrible random number generator?

22
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Well, anyone not paid that is...

• RSA Data Security accepted 30 pieces of silver  
$10M from the NSA to implement Dual_EC in their  
RSA BSAFE library

• And silently make it the default pRNG


• Using RSA's support, it became a NIST standard

• And inserted into other products...


• And then the Snowden revelations

• The initial discussion of this sabotage in the  

NY Times just vaguely referred to a Crypto  
talk given by Microsoft people...


• That everybody quickly realized referred to Dual_EC
23
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But this is insanely powerful...

• It isn't just forward prediction but being able to run the generator backwards!

• Which is why Dual_EC is so nasty:   

Even if you know the internal state of HMAC_DRBG it has rollback resistance!


• In TLS (HTTPS) and Virtual Private Networks you have a motif of:

• Generate a random session key

• Generate some other random data that's  

public visible

• EG, the IV in the encrypted channel, or the "random"  

nonce in TLS

• Oh, and an NSA sponsored "standard" to spit out even more 

"random" bits!


• If you can run the random number 
generator backwards, you can find the  
session key

24
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It Got Worse: 
Sabotaging Juniper
• Juniper also used Dual_EC in their Virtual Private Networks

• "But we did it safely, we used a different Q"


• Sometime later, someone else noticed this...

• "Hmm, P and Q are the keys to the backdoor... 

Lets just hack Juniper and rekey the lock!"

• And whoever put in the first Dual_EC then went "Oh crap, we got locked out but we can't do anything about it!"


• Sometime later, someone else goes...

• "Hey, lets add an ssh backdoor"


• Sometime later, Juniper goes

• "Whoops, someone added an ssh backdoor, lets see  

what else got F'ed with, oh, this # in the pRNG"


• And then everyone else went

• "Ohh, patch for a backdoor.  Lets see what got fixed.   

Oh, these look like Dual_EC parameters..."
25
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Sabotaging "Magic Numbers" 
In General
• Many cryptographic implementations depend on "magic" numbers

• Parameters of an Elliptic curve

• Magic points like P and Q

• Particular prime p for Diffie/Hellman

• The content of S-boxes in block cyphers


• Good systems should cleanly  
describe how they are generated

• In some sound manner (e.g. AES's S-boxes)

• In some "random" manner defined by a pRNG with a specific seed

• Eg, seeded with "Nicholas Weaver Deserves Perfect Student Reviews"... 

Needs to be very low entropy so the designer can't try a gazillion seeds
26
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Because Otherwise You 
Have Trouble...
• Not only Dual-EC's P and Q

• Recent work: 1024b Diffie/Hellman moderately impractical...

• But you can create a sabotaged prime that is 1/1,000,000 the work to crack! 

And the most often used "example" p's origin is lost in time!


• It can cast doubt even when a design is solid:

• The DES standard was developed by IBM but with input from the NSA

• Everyone was suspicious about the NSA tampering with the S-boxes...

• They did: The NSA made them stronger against 

an attack they knew but the public didn't

• The NSA-defined elliptic curves P-256 and P-384

• I trust them because they are in Suite-B/CNSA so the  

NSA uses them for TS communication: 
A backdoor here would be absolutely unacceptable... 
but only because I actually believe the NSA wouldn't go 
and try to shoot itself in the head!
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So Far...

• We have symmetric key encryption...

• But that requires Alice and Bob knowing a key in advance


• We have symmetric integrity with MACs...

• But anyone who can verify the integrity can also modify the message


• Goal of public key is to change that

• Allows creation of a symmetric key in the presence of an adversary

• Allows creation of a message to Alice by anybody but only Alice can decrypt

• Allows creation of a message exclusively by Alice than anybody can verify

28
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Our Roadmap...

• Public Key:

• Something everyone can know


• Private Key:

• The secret belonging to a specific person


• Diffie/Hellman:

• Provides key exchange with no pre-shared secret


• ElGamal & RSA:

• Provide a message to a recipient only knowing the recipient's public key


• DSA & RSA signatures:

• Provide a message that anyone can prove was generated with a private key

29
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Diffie-Hellman Key Exchange

• What if instead they can somehow generate a random key when 
needed?


• Seems impossible in the presence of Eve observing all of their 
communication …

• How can they exchange a key without her learning it?


• But: actually is possible using public-key technology

• Requires that Alice & Bob know that their messages will reach one another without any 

meddling


• Protocol: Diffie-Hellman Key Exchange (DHE)

• The E is "Ephemeral", we use this to create a temporary key for other uses and then 

forget about it
30
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Diffie-Hellman Key Exchange

31

Alice Bob

Eve

1. Everyone	agrees	in	advance	on	a	
well-known	(large)	prime	p	and	a	
corresponding	g:	1	<	g	<	p-1

p, g

p, g

p, g
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DHE

32

Alice Bob

Eve

2. Alice	picks	random	secret	‘a’:	1	<	a	<	p-1 

3. Bob	picks	random	secret	‘b’:	1	<	b	<	p-1

p, g

p, g

p, g

a b

a? b?
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DHE

33

Alice Bob

Eve

4. Alice	sends	A	=	ga	mod	p	to	Bob	

5. Bob	sends	B	=	gb	mod	p	to	Alice  
 
Eve	sees	these

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B
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DHE

34

Alice Bob

Eve

6. Alice	knows	{a,	A,	B},	computes	
K	=	Ba	mod	p	=	(gb)a	=	gba	mod	p 

7. Bob	knows	{b,	A,	B},	computes	K	
=	Ab	mod	p	=	(ga)b	=	gab	mod	p 

8. K	is	now	the	shared	secret	key.

p, g

p, g

p, g

a b

a? b?

A = ga mod pA

A

gb mod p = BB

B

A
B

K K
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DHE

35

Alice Bob

Evep, g

p, g

p, g

a b

a? b?
A
B

K K

While	Eve	knows	{p,	g,	ga	mod	p,	gb	mod	p},	believed	to	be	
computationally	infeasible	for	her	to	then	deduce	K	=	gab	mod	p. 

She	can	easily	construct	A·B	=	ga·gb	mod	p	=	ga+b	mod	p.	  
But	computing	gab	requires	ability	to	take	discrete	logarithms	mod	p.
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Diffie Hellman is part of more generic problem

• This involved deep mathematical voodoo called "Group 
Theory"


• Its actually done under a group G


• Two main groups of note:

• Numbers mod p with generator g

• Point addition in an elliptic curve C

• Usually identified by number, eg. p256, p384 (NSA-developed curves) or  

Curve25519 (developed by Dan Bernstein, also 256b long)


• So EC (Elliptic Curve) == different group

• Thought to be harder so fewer bits: 384b ECDHE ?= 3096b DHE

36
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This is Ephemeral Diffie/Hellman

• K = gab mod p is used as the basis for a "session key"

• A symmetric key used to protect subsequent communication between Alice 

and Bob

• In general, public key operations are vastly more expensive than symmetric key, so it 

is mostly used just to agree on secret keys, transmit secret keys, or sign hashes

• If either a or b is random, K is random


• When Alice and Bob are done, they discard K, a, b

• This provides forward secrecy:  Alice and Bob don't retain any information 

that a later attacker who can compromise Alice or Bob's secrets could use to 
decrypt the messages exchanged with K.
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But Its Not That Simple

• What if Alice and Bob aren't facing a passive eavesdropper

• But instead are facing Mallory, an active Man-in-the-Middle


• Mallory has the ability to change messages:

• Can remove messages and add his own


• Lets see...  Do you think DHE will still work as-is?

38
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Attacking DHE

as a MitM

39

Alice Bob

p, g

p, g

p, g
Mallory

What	happens	if	instead	of	Eve	
watching,	Alice	&	Bob	face	the	
threat	of	a	hidden	Mallory	(MITM)?
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The MitM 
Key Exchange

40

Alice Bob

p, g

p, g

p, g
Mallory

2. Alice	picks	random	secret	‘a’:	1	<	a	<	p-1 

3. Bob	picks	random	secret	‘b’:	1	<	b	<	p-1

a b

a? b?
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

4. Alice	sends	A	=	ga	mod	p	to	Bob	

5. Mallory	prevents	Bob	from	
receiving	A

A = ga mod pA

A
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Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

6. Mallory	generates	her	own	a',	b' 

7. Mallory	sends	A'	=	ga'	mod	p	to	Bob

A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'
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43

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The	same	happens	for	Bob	and	B/B'
A = ga mod pA

A, A'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B
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44

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

8. The	same	happens	for	Bob	and	B/B'

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B’ = gb' mod pB'
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45

Alice Bob

p, g

p, g

p, g
Mallory

a b

a? b?

9. Alice	and	Bob	now	compute	keys	they	share	with	…	Mallory! 

10. Mallory	can	relay	encrypted	traffic	between	the	two	... 

10'.	Modifying	it	or	making	stuff	up	however	she	wishes

A = ga mod pA

A, B, A', B'
a', b'

A' = ga' mod pA'

gb mod p = B
A'
B

B' = gb' mod p
B'

K'1	=	(B')a	mod	p  
						=	(gb')a	=	gb'a	mod	p

K'2	=	(A')b	mod	p  
						=	(ga')b	=	ga'b	mod	p

K'1	=	Ab'	mod	p	=	gab'	mod	p 
K'2	=	Ba'	mod	p	=	gba'	mod	p
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So We Will Want 
More...
• This is online:

• Alice and Bob actually need to be active for this to work...


• So we want offline encryption:

• Bob can send a message to Alice that Alice can read at a later date


• And authentication:

• Alice can publish a message that Bob can verify was created by Alice later

• Can also be used as a building-block for eliminating the MitM in the DHE key 

exchange: 
Alice authenticates A, Bob verifies that he receives A not A'.

46
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Public Key Cryptography #1: 
RSA
• Alice generates two large primes, p and q

• They should be generated randomly: 

Generate a large random number and then use a "primality test": 
A probabilistic algorithm that checks if the number is prime


• Alice then computes n = p*q and φ(n) = (p-1)(q-1)  
• φ(n) is Euler's totient function, in this case for a composite of two primes


• Chose random 2 < e < φ(n)

• e also needs to be relatively prime to φ(n) but it can be small


• Solve for d = e-1 mod φ(n) 
• You can't solve for d without knowing φ(n), which requires knowing p and q


• n, e are public, d, p, q, and φ(n) are secret
47
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RSA Encryption

• Bob can easily send a message m to Alice:

• Bob computes c = me mod n

• Without knowing d, it is believed to be intractable to compute m given c, e, 

and n

• But if you can get p and q, you can get d: 

It is not known if there is a way to compute d without also being able to factor n,  
but it is known that if you can factor n, you can get d.


• And factoring is believed to be hard to do


• Alice computes m = cd mod n = med mod n

• Time for some math magic...

48
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RSA Encryption/Decryption, con’t

• So we have: D(C, KD) = (Me∙d) mod n

• Now recall that d is the multiplicative inverse of e, modulo φ(n), and 

thus: 
	e∙d = 1 mod φ(n)    (by definition) 
	e∙d - 1 = k∙φ(n)       for some k


• Therefore D(C, KD) = Me∙d mod n = (Me∙d-1)∙M mod n

=(Mkφ(n))∙M mod n 
=[(Mφ(n))k]∙M mod n 
=(1k)∙M mod n           by Euler’s Theorem: aφ(n) mod n = 1

=M mod n = M

49(believed) Eve can recover M from C iff Eve can factor n=p·q
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But It Is Not That Simple...

• What if Bob wants to send the same message to Alice twice?

• Sends mea mod na and then mea mod na

• Oops, not IND-CPA!


• What if Bob wants to send a message to Alice, Carol, and Dave:

• mea mod na 

meb mod nb 
mec mod nc


• This ends up leaking information an  
eavesdropper can use especially if 3 = ea = eb = ec !


• Oh, and problems if both e and m are small...

• As a result, you can not just use plain RSA:

• You need to use a "padding" scheme that makes the  

input random but reversible
50
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RSA-OAEP  
(Optimal asymmetric encryption padding)
• A way of processing m with a hash function & random 

bits

• Effectively "encrypts" m replacing it with X = [m,0...] ⨁ G(r)

• G and H are hash functions (EG SHA-256) 

k0 = # of bits of randomness, len(m) + k1 + k0 = n

• Then replaces r with Y = H(G(r) ⨁ [m,0...]) ⨁ R 

• This structure is called a "Feistel network":

• It is always designed to be reversible. 

Many block ciphers are based on this concept applied multiple times with G 
and H being functions of k rather than just fixed operations


• This is more than just block-cipher padding (which 
involves just adding simple patterns)

• Instead it serves to both pad the bits and make the data to be 

encrypted "random"
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But Its Not That Simple... 
Timing Attacks
• Using normal math, the time it takes for 

Alice to decrypt c depends on c and d

• Ruh roh, this can leak information...

• More complex RSA implementations take advantage of 

knowing p and q directly... 
but also leak timing


• People have used this to guess and then 
check the bits of q on OpenSSL

• http://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf


• And even more subtle things are possible...
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    x = C
    for j = 1 to n
        x = mod(x2, N)
        if dj == 1 then
           x = mod(xC, N) 
        end if
    next j
    return x
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So How to Find Bob's Key?

• Lots of stuff later, but for now... 
The Leap of Faith!


• Alice wants to talk to Bob:

• "Hey, Bob, tell me your public key!"


• Now on all subsequent times...

• "Hey, Bob, tell me your public key", and check to see if it is different from what 

Alice remembers


• Works assuming the first time Alice talks to Bob there isn't a 
Man-in-the-Middle

• ssh uses this
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RSA Signatures...

• Alice computes a hash of the message H(m) 
• Alice then computes s = (H(m))d mod n


• Anyone can then verify 

• v = se mod m = ((H(m))d)e mod n = H(m) 

• Once again, there are "F-U"s...

• Have to use a proper encoding scheme to do 

this properly and all sort of other traps

• One particular trap: a scenario where 

the attacker can get Alice to repeatedly 
sign things (an "oracle")
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But Signatures Are 
Super Valuable...
• They are how we can prevent a MitM!

• If Bob knows Alice's key, and Alice knows Bob's...

• How will be "next time"


• Alice doesn't just send a message to Bob...

• But creates a random key k...

• Sends E(M,Ksess), E(Ksess,Bpub), S(H(M),Apriv)


• Only Bob can decrypt the message, and Bob can verify the 
message came from Alice


• So Mallory is SOL!
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RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?

• RSA isn't particularly compact or efficient: dealing with 2000b (comfortably 

secure) or 3000b (NSA-paranoia) bit operations

• Can we get away with fewer bits?

• Well, Diffie-Hellman isn't any better...

• But elliptic curve Diffie-Hellman is


• RSA also had some patent issues

• So an attempt to build public key algorithms around the Diffie-Hellman 

problem
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El-Gamal

• Just like Diffie-Hellman...

• Select p and g

• These are public and can be shared


• Alice choses x randomly as her private key

• And publishes h = gx mod p as her public key


• Bob, to encrypt m to Alice...

• Selects a random y, calculates c1 = gy mod p, s = hy mod p = gxy mod p

• s becomes a shared secret between Alice and Bob

• Maps message m to create m', calculates c2 = m' * s mod p  

• Bob then sends {c1, c2}
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El-Gamal Decryption

• Alice first calculates s = c1x mod p

• Then Alice calculates m' = c2 * s-1 mod p  
• Then Alice calculates the inverse of the mapping to get m


• Of course, there are problems...

• Attacker can always change m' to 2m'

• What if Bob screws up and reuses y?

• c2  = m1' * s mod p 

c2' = m2' * s mod p 
• Ruh roh, this leaks information: 

c2 / c2' = m1' / m2' 
• So if you know m1...
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DSA Signatures...

• Again, based on Diffie-Hellman

• Two initial parameters, L and N, and a hash function H

• L == key length, eg 2048 

N <= len(H), e.g. 256 
• An N-bit prime q, an L-bit prime p such that p - 1 is a multiple of q, and  

g = h(p-1)/q mod p for some arbitrary h (1 < h < p − 1)

• {p, q, g} are public parameters


• Alice creates her own random private key x < q

• Public key y = gx mod p
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Alice's Signature...

• Create a random value k < q

• Calculate r = (gk mod p) mod q 
• If r = 0, start again


• Calculate s = k-1 (H(m) + xr) mod q

• If s = 0, start again


• Signature is {r, s} (Advantage over an El-Gamal signature variation: Smaller signatures)


• Verification

• w = s-1 mod q 
• u1 = H(m) * w mod q 
• u2 = r * w mod q 
• v = (gu1yu2 mod p) mod q 
• Validate that v = r
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But Easy To Screw Up...

• k is not just a nonce...  It must be random and secret

• If you know k, you can calculate x


• And even if you just reuse a random k... 
for two signatures sa and sb


• A bit of algebra proves that k = (HA – HB) / (sa – sb) 

•  A good reference:

• How knowing k tells you x: 

https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

• How two signatures tells you k: 

https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
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And NOT theoretical: 
Sony Playstation 3 DRM
• The PS3 was designed to only run signed 

code

• They used ECDSA as the signature algorithm

• This prevents unauthorized code from running

• They had an option to run alternate operating systems 

(Linux) that they then removed 


• Of course this was catnip to reverse 
engineers

• Best way to get people interested: 

remove Linux from a device...


• It turns for out one of the key authentication 
keys used to sign the firmware...

• Ended up reusing the same k for multiple signatures!
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And NOT Theoretical: 
Android RNG Bug + Bitcoin
• OS Vulnerability in 2013 

Android "SecureRandom" wasn't actually secure!

• Not only was it low entropy, it would occasionally return the same 

value multiple times


• Multiple Bitcoin wallet apps on Android were 
affected

• "Pay B Bitcoin to Bob" is signed by Alice's public key using ECDSA

• Message is broadcast publicly for all to see


• So you'd have cases where "Pay B to Bob" and  
"Pay C to Carol" were signed with the same k


• So of course someone scanned for all such  
Bitcoin transactions
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