Nick Weaver
Fall 2018

C5 161

Computer Security

Discussion 10

Week of October 29, 2018

Question 1 DNSSEC / TLS

(15 min)

(a) Oski wants to securely communicate with CalBears.com using TLS. Which of the
following entities must Oski trust in order to communicate with confidentiality,
integrity, and authenticity?

1.

SAEE

The operators of CalBears.com
Oski’s computer

Cryptographic algorithms
Computers on Oski’s local network

The operators of CalBears.com’s au-
thoritative DNS servers

The entire network between Oski
and CalBears.com

10.

11.

CalBears.com’s CA

. All of the CAs that come configured

into Oski’s browser

. All of the CAs that come configured

into CalBears.com’s software

The operators of .com’s Authorita-
tive DNS servers

The operators of the Authoritative
DNS root servers

Solution: (1) The operators of CalBears.com, (2) Oski’s computer, (3) Cryp-
tographic algorithms, (7) CalBears.com’s Certificate Authority, (8) All of the
CAs that come configured into Oski’s browser. This last would not be the case
if Oski’s client has pinned the CalBears.com certificate.

(b) Suppose we didn’t want to trust any of the existing CAs, but DNSSEC was widely
deployed and we were willing to trust DNSSEC and the operators of the root zone
and of .com. How could TLS be modified, to avoid the need to trust any of the
existing CAs, under these conditions?

Solution: The basic idea would be for a TLS client to retrieve a site’s public
keys via DNSSEC records from the site’s domain, rather than via a certificate
sent by the server and signed by a CA. Such an approach could also instead
return signatures of public keys that the server would then still send to the
TLS client; the client would now validate the public key based on the signature
received via DNSSEC rather than some CA. The inspiration for this question
came from DNS-based Authentication of Named Entities (DANE). DANE is a

Page 1 of 7



standard currently under development that, among other things, allows certifi-
cates to be bound to DNSSEC records.

(¢) Assume end-to-end DNSSEC deployment as well as full deployment of your change.
Oski wants to securely communicate with CalBears.com using TLS. What changes
are there to the list in part A (i.e., what must Oski trust in order to communicate
with confidentiality, integrity, and authenticity)?

Solution: No longer need to trust: (8) All of the CAs that are configured
in Oski’s browser, (7) CalBears.com Certificate Authority.

Also need to trust: (5) The operators of CalBears.com’s authoritative DNS
servers, (10) The operators of .com’s authoritative DNS servers, (11) The oper-
ators of the authoritative DNS root servers.

(d) Is this change good or bad? List at least one positive and one negative effect that
would result from this change.

Solution: Many answers are possible here. One could say that it’s a good
change because there are now fewer parties to trust. Another answer is that it’s
a good change because it associates trust directly with parties associated with
a domain, rather than with all CAs. But one could also argue that now the
operators of the root name servers gain a great deal of power.

Discussion 10 Page 2 of 7 CS 161 — Fa 18



Question 2 WPA2 (15 min)
Let’s review WPA2. You might find some of the definitions below helpful.

e PMK is the premaster key, also known as “the WiFi password”.
e PTK is the pairwise transient key, which is used to derive symmetric keys.

e KCK is the key confirmation key, which helps the client and the access point confirm
they’ve agreed on the same keys.

WPAX Protocol

Client W
Auvtherticodtion Reavest )

Rownclom Avence

Derive. PTK from PMk
SWonce, AMonce, and
SSID of Access Point

Both derive kCk from PTK

Send MIC{kTi, Stonce)

[

Cemmunicodte 'I-"Em-ﬂl
PTi~derived ke

A

Discussion 10 Page 3 of 7 CS 161 — Fa 18



(a) Louis Reasoner proposes that we don’t generate ANonce or SNonce, and instead
derive the PTK directly from the SSID and PMK. What sort of attack does this fail
to prevent?

Solution:

Replay attacks! Nonces always stop replay attacks.

(b) WPA2 has an interesting pattern which is common in cryptographic protocols.
Both parties agree on a shared secret, which they use to derive keys. Which other
protocol have we seen which follows this motif?

Solution:

TLS-both parties agree on a premastered secret.

(c) Alyssa P. Hacker wants to compromise a WPA2 WiFi network. In order to do so,
she performs the handshake many times. She bruteforces possible PMK against
the Access Point many times, until the access point eventually accepts it. If the
password has 28 bits of entropy! and the attacker can make 10 guesses a second,
how long will it take to bruteforce the password?

Solution:

228 /10 =~ 310 days.

(d) Ben Bitdiddle has an alternate idea. Ben waits until Louis attempts to connect to
the network. While this happens, he records all of the messages that Louis sends
over the network. How can Ben use this to bruteforce possible PMKs? Why do we
expect this to be faster than Alyssa’s method?

Solution:

Ben can attempt to bruteforce PMK and derive keys the same way the access
point and Louis would. Once he gets the same key confirmation key (which he
can check by looking at a MIC computed with the key-confirmation key), then
he knows that he’s probably generated the same keys and hence has the right
PMK.

This is significantly faster than Alyssa’s method because it can be computed
offline.

L As per this XKCD comic, a password which looks like TrOub4dor&3 has roughly 28 bits of entropy.

Discussion 10 Page 4 of 7 CS 161 — Fa 18


https://www.xkcd.com/936/

Question 3 NSEC (20 min)
In class, you learned about DNSSEC, which uses certificate-style authentication for DNS
results.

(a) In the case of a negative result (the name requested doesn’t exist), what is the
result returned by the nameserver to avoid dynamically signing a statement such
as “aaa.google.com does not exist”? (This should be a review from lecture.)

Solution: The nameserver uses a canonical alphabetical ordering of all record
names in its zone. It creates (off-line) signed statements for each pair of adjacent
names in the ordering. When a request comes in for which there is no name,
the nameserver replies with the record that lists the two existing names just
before and just after where the requested name would be in the ordering. This
proves the non-existence of the requested name. The reply is called an NSEC
resource record.

For example, suppose the following names exist in google.com when it’s viewed
in alphabetical order:

a-one-and-a-two-and-a-three-and-a-four.google.com
alsauce.google.com
aardvark.google.com

In this ordering, aaa.google.com would fall between alsauce.google.com and
aardvark.google.com. So in response to a DNSSEC query for aaa.google.com,
the name server would return an NSEC RR that in informal terms states “the
name that in alphabetical order comes after alsauce.google.com is
aardvark.google.com”, along with a signature of that NSEC RR made using
google.com’s key.

The signature allows the recipient to verify the validity of the statement, and
by checking that aaa.google.com would have fallen between those two names,
the recipient has confidence that the name indeed does not exist.

(b) One drawback with this approach is that an attacker can now enumerate all the
record names in a zone. Why might this be a security concern?

Solution: Revealing this information could aid in other attacks. For example,
the names in a zone could be used as targets when probing for vulnerable servers.

(c¢) Louis proposes to modify NSEC as follows. First, the site operator will take a
hash of each domain that does exist. Then, the site operator proceeds as in NSEC:
they sort the hashes and sign each adjacent pair. How can this be used to provide
authenticated denial? How does this help mitigate enumeration attacks?

Discussion 10 Page 5 of 7 CS 161 — Fa 18



Solution: Instead of sorting on the domains, the sorting is done on hashes of
the names. For example, suppose the procedure is to use SHA1 and then sort
the output treated as hexadecimal digits. If the original zone contained:

barkflea.foo.com
boredom.foo.com
bug-me.foo.com
galumph.foo.com
help-me.foo.com
perplexity.foo.com
primo.foo.com

then the corresponding SHA1 values would be:

barkflea.foo.com = e24f2a7b9fa26e2a0c201a7196325889abf7c45b
boredom.foo.com = 6d0edfd3efabbf11b094cb26a7c95a3bd5e85a84
bug-me.foo.com = 649bb99765bb29c379d935a68db2eebc9bad6a29
galumph.foo.com = 71d0549ab66459447a62b639849145dacelfatb8e
help-me.foo.com = 1ed14d3733£88e5794cd30cbbef8cc32fad7db2a
perplexity.foo.com = 446ac4777£8d3883da81631902fafd0eba3064ec
primo.foo.com = 8a1011003ade80461322828f3b55b46c44814d6Db

Sorting these on the hex for the hashes:

help-me.foo.com = 1ed14d3733£88e5794cd30cbbef8cc32fad7db2a
perplexity.foo.com = 446ac4777£8d3883da81631902fafd0eba3064ec
bug-me.foo.com = 649bb99765bb29c379d935a68db2eebc95ad6a29
boredom.foo.com = 6d0edfd3efabbf11b094cb26a7c95a3bd5e85a84
galumph.foo.com = 71d0549ab66459447a62b63984914bdacelfat8e
primo.foo.com = 8a1011003ade80461322828f3b55b46c44814d6b
barkflea.foo.com = e24f2a7b9fa26e2a0c201a7196325889abf7c45b

Now if a client requests a lookup of snup.foo.com, which doesn’t exist, the name
server will return a record that in informal terms states “the hash that in al-
phabetical order comes after 71d0549ab66459447a62b639849145dacelfab8e is
8a1011003ade80461322828f3b55b46c44814d6b” (again along with a signature
made using foo.com’s key). This type of Resource Record is called NSECS3.

The client would compute the SHA1 hash of snup.foo.com:
snup.foo.com = 81a8eb88bf3dd1£80c6d21320b3bc989801caae9

and verify that in alphabetical order it indeed falls between those two returned
values (standard ASCII sorting collates digits as coming before letters). That
confirms the non-existence of snup.foo.com but without indicating what names
do exist, just what hashes exist.

By using a cryptographically strong hash function like-SHAZ?, it’s believed

Discussion 10 Page 6 of 7 CS 161 — Fa 18



infeasible to reverse the hash function to find out what name(s) appear in the
zone (there’s more than one potential name because hash functions are many-
to-one). Note though that an attacker can still conduct a dictionary attack,
either directly trying names to see whether they exist, or inspecting the hash
values returned by NSEC3 RRs to determine whether names in a dictionary (for
which the attacker computes hash values offline) indeed appear in the domain.

2As we know, SHAT1 is no longer considered secure for many use cases. Using stronger hash functions for
DNSSEC is therefore recommended. That said, the property we need from the hash function is one-way-ness,
which to date is not an identified weakness of SHA1 (nor of MD5, in fact).

Discussion 10 Page 7 of 7 CS 161 — Fa 18


https://shattered.it/
https://tools.ietf.org/html/rfc5702

