
Nick Weaver
Fall 2018

CS 161
Computer Security Discussion 2

Week of September 3, 2018

Question 1 Software Vulnerabilities (25 min)
For the following code, assume an attacker can control the value of basket passed into
eval basket. The value of n is constrained to correctly reflect the number of elements
in basket.

The code includes several security vulnerabilities. Circle three such vulnerabilities
in the code and briefly explain each of the three.

1 struct food {
2 char name [1 0 2 4] ;
3 int c a l o r i e s ;
4 } ;
5
6 /∗ Evaluate a shopping baske t with at most 32 food items .
7 Returns the number o f low−c a l o r i e items , or −1 on a problem . ∗/
8 int eva l ba sk e t (struct food basket [] , s i z e t n) {
9 struct food good [3 2] ;

10 char bad [1 0 2 4] , cmd [1 0 2 4] ;
11 int i , t o t a l = 0 , ngood = 0 , s i z e bad = 0 ;
12
13 i f (n > 32) return −1;
14
15 for (i = 0 ; i <= n ; ++i) {
16 i f (basket [i] . c a l o r i e s < 100)
17 good [ngood++] = basket [i] ;
18 else i f (basket [i] . c a l o r i e s > 500) {
19 s i z e t l en = s t r l e n (basket [i] . name) ;
20 s np r i n t f (bad + s i ze bad , len , ”%s ” , basket [i] . name) ;
21 s i z e bad += len ;
22 }
23
24 t o t a l += basket [i] . c a l o r i e s ;
25 }
26
27 i f (t o t a l > 2500) {
28 const char ∗ fmt = ”health−f a c t o r −−c a l o r i e s %d −−bad−i tems %s” ;
29 f p r i n t f (s tde r r , ” l o t s o f c a l o r i e s ! ”) ;
30 s np r i n t f (cmd , s izeof cmd , fmt , t o ta l , bad) ;
31 system (cmd) ;
32 }
33
34 return ngood ;
35 }

Reminders:

• snprintf(buf, len, fmt, . . .) works like printf, but instead writes to buf, and
won’t write more than len - 1 characters. It terminates the characters written with
a ‘\0’.

• system runs the shell command given by its first argument.

Page 1 of 5

Solution: There are significant vulnerabilities at lines 15/17, 20, and 31.

Line 15 has a fencepost error: the conditional test should be i < n rather than
i <= n. The test at line 13 assures that n doesn’t exceed 32, but if it’s equal to
32, and if all of the items in basket are “good”, then the assignment at line 17 will
write past the end of good, representing a buffer overflow vulnerability.

At line 20, there’s an error in that the length passed to snprintf is supposed to
be available space in the buffer, but instead it’s the length of the string being copied
(along with a blank) into the buffer. Therefore by supplying large names for items in
basket, the attacker can write past the end of bad at this point, again representing
a buffer overflow vulnerability.

At line 31, a shell command is run based on the contents of cmd, which in turn
includes values from bad, which in turn is derived from input provided by the at-
tacker. That input could include shell command characters such as pipes (‘|’) or
command separators (‘;’), facilitating command injection.

Some more minor issues concern the name strings in basket possibly not being
correctly terminated with ′\0′s, which could lead to reading of memory outside of
basket at line 19 or line 20.

Note that there are no issues with format string vulnerabilities at any of lines 20,
29, or 30. For each of those, the format itself does not include any elements under
the control of the attacker.

Discussion 2 Page 2 of 5 CS 161 – Fa 18

Question 2 C Memory Defenses (10 min)
Mark the following statements as True or False and justify your solution. Please feel
free to discuss with students around you.

1. Stack canaries cannot protect against all buffer overflow attacks in the stack.

Solution:

True, stack canaries defeated if they are revealed by information leakage, or if
there is not sufficient entropy, an attacker can guess the value. Remember, the
attack just needs to work once in the real world.

2. A format-string vulnerability can allow an attacker to overwrite a saved return
address even when stack canaries are enabled.

Solution:

True, with format string vulnerabilities, the attacker can learn the contents of
the stack frame, other parts of memory, and write to other addresses in memory.
Stack canaries won’t save you here.

3. If you have data execution prevention/executable space protection/NX bit, an at-
tacker can write code into memory to execute.

Solution:

False, the definition of the NX bit is that it prevents code from being writable
and executable at the same time. An attacker who can write code into memory
cannot execute it.

4. If you have a non-executable stack and heap, buffer overflows are no longer ex-
ploitable.

Solution:

False. Many attacks rely on writing malicious code to memory and then execut-
ing them. If we make writable parts of memory non-executable, these attacks
cannot succeed. However there are other types of attacks which still work in
these cases, such as return oriented programming.

5. If you have a non-executable stack and heap, an attacker can use Return Oriented
Programming.

Discussion 2 Page 3 of 5 CS 161 – Fa 18

Solution:

True, Return oriented programming is a technique that uses existing instruc-
tions already in memory to change the original program flow.

6. If you use a memory-safe language, buffer overflow attacks are impossible.

Solution:

True, buffer overflow attacks do not work with memory safe languages.

7. ASLR, stack canaries, and NX bits all combined are insufficient to prevent exploita-
tion of all buffer overflow attacks.

Solution:

True, all of these protections can be overcome.

Short answer!

1. What would happen if the stack canary was between the return address and the
saved frame/base pointer?

Solution:

An attacker can overwrite the saved frame pointer so when the program tries
to return, it uses the wrong address as the return address.

2. What if the canary was above the return address?

Solution:

It doesn’t stop an attacker from overwriting the return address. Although if an
attacker had absolutely no idea where the return address, it could potentially
detect stack smashing.

Discussion 2 Page 4 of 5 CS 161 – Fa 18

Question 3 TCB (Trusted Computing Base) (10 min)
In lecture, we discussed the importance of a TCB and the thought that goes into de-
signing it. Answer these following questions about the TCB:

1. What is a TCB?

2. What can we do to reduce the size of the TCB?

3. What components are included in the (physical analog of) TCB for the following
security goals:

(a) Preventing break-ins to your apartment

(b) Locking up your bike

(c) Preventing people from riding BART for free

(d) Making sure no explosives are present on an airplane

Solution:

1. It is the set of hardware and software on which we depend for correct enforce-
ment of policy. If part of the TCB is incorrect, the system’s security properties
can no longer be guaranteed to be true. Anything outside the TCB isn’t relied
upon in any way.

2. Privilege separation can help reduce the size of the TCB. You will end up with
more components, but not all of them can violate your security goals if they
break.

3. (This list is not necessarily complete)

(a) the lock, the door, the walls, the windows, the roof, the floor, you, anyone
who has a key

(b) the bike frame, the bike lock, the post you lock it to, the ground

(c) the ticket machines, the tickets, the turnstiles, the entrances, the employ-
ees

(d) the TSA employees, the security gates, the ”one-way” exit gates, the
fences surrounding the runway area

Discussion 2 Page 5 of 5 CS 161 – Fa 18

