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Week of September 10, 2018: Cryptography I

Question 1 Activity: Cryptographic security levels (20 min)
Say Alice has a randomly-chosen symmetric key K ∈ {0, 1}128 (that is, a 128-bit key)
that she uses to encrypt her messages to Bob.

Eve is very suspicious of these messages and would like to brute-force guess the key. She
does this by getting a pair (M,C) where she knows that C is Alice’s encryption of M .
She keeps guessing keys k until Ek(M) = C.

(a) Probability review. How many attempts does Eve expect to have to try in order
to guess Alice’s key, if she guesses keys completely at random (with repetition)?
What about if she guesses in order (without repetition)?

(b) Eve sits down at her computer and starts brute-forcing the key. If her computer
can attempt 1 billion keys per second, how much time does Eve expect to wait?

How long of a time is this?

(c) Eve decides to enlist the help of her friend Ed, who works at the NSA and has
access to a cluster of 1,000,000 servers1 running in parallel that can each guess 10
billion keys per second.

Now how long will Eve be waiting? How much faster is this?

(d) Alice starts getting worried about Eve and decides to increase the key size to 256
bits. Bob claims this is pointless since the key is only twice as big as before, and
so Eve needs only double as much time as before. Is he right?

(e) Bonus. The quantum computing Grover’s algorithm lets you brute force a function
using onlyO(N1/2) evaluations, instead of theO(N) required in classical computing.

If Eve gets a quantum computer, now how many attempts does Eve have to try for
a 128 bit key? How much faster is this?

If we wanted to increase key size to combat this, how much of an increase do we
need? Should we be concerned about possible future quantum computing attacks
against symmetric-key cryptography?

Solution:

1This is estimated to be around the number of servers that Google has. https://what-if.xkcd.com/63/
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(a) If Eve guesses at random, we get a geometric probability distribution, with
p = 2−128 (the probability of correct guess). The expected value is 1/p, so
Eve needs to make 2128 guesses.

Even if Eve guesses in a systematic way, like counting up from 0, she still
needs to make approximately 2127 guesses on average, which is still almost
as many as 2128 (just a factor of 1/2 away).

(b) 2128 nanoseconds, which is 3.4×1029 seconds, or 1.0×1022 years, or 8×1011

times the age of the universe.

(c) Even with this massive power increase (10 million times faster), Eve will
still expect to wait 3.4× 1022 seconds, or 1.0× 1015 years, or 80, 000 times
the age of the universe.

(d) No. Doubling the size of the key means Eve now has to make 2256 guesses,
which is the square of 2128, not double (twice 2128 is 2129).

(e) This attack shortens the needed number of attempts to 2128/2 = 264. This
is much shorter: only 584 years at 1 ns per attempt (and merely 30 minutes
using the setup in part (c))! But the attack can be entirely mitigated by
just doubling the key size (like in part (d)). For this reason we mostly
don’t worry about quantum attacks on symmetric-key crypto.
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Question 2 PRNGs and stream ciphers (10 min)

(a) Pretend I have given you a pseudo-random number generator R. R is a function
that takes a 128-bit seed s, an integer n, and an integer m, and outputs the nth

(inclusive) through mth (exclusive) pseudo-random bits produced by the generator
when it is seeded with seed s. Use R to make a secure symmetric-key encryption
scheme. That is, define the key generation algorithm, the encryption algorithm,
and the decryption algorithm.

Solution:

• Key generation. Generate a random 128-bit key K ∈ {0, 1}128.

• Encryption. Let j be the latest index we have used from our PRNG. We
start with j := 0 and maintain the state of j for subsequent encryptions.
Let L be the number of bits in message M . Then,

E(K,M) = R(K, j, j + L)⊕M.

After every encryption, j must be incremented by L.

• Decryption. Define j and L as above. We have

D(K,C) = R(K, j, j + L)⊕ C.

(b) Explain how using a block cipher in counter (CTR) mode is similar to the scenario
described above.

Solution: CTR mode is similar to a stream cipher mode. It uses the key to
generate a pseudo-random stream of bits. This random stream is then XORed
with the message to form the ciphertext.

In CTR mode, there is no computational dependency between the rounds, which
enables an efficient parallel computation. Additionally, the IV is replaced with
a nonce and counter.

Nonce and counter are encrypted with key K to produce the random stream
that for a given element of the plaintext Pi is XORed with Pi to produce the
ciphertext Ci. In summary, CTR is defined as:

Ri := E(K,Nonce||i)
Ci := Pi ⊕Ri

Pi := Ci ⊕Ri

where || denotes concatenation.
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Question 3 Block cipher security and modes of operation (15 min)
As a reminder, the cipher-block chaining (CBC) mode of operation works like this:

The output of the encryption is the ciphertext concatenated with the IV that was used.

(a) Does the initialization vector (IV) have to be non-repeating? Why?

Solution: Yes, a fundamental criteria for IVs is that they cannot repeat. This
prevents CBC from degenerating into a deterministic encryption algorithm (such
as ECB mode). In deterministic encryption schemes, if we encrypt the same mes-
sage multiple times, the ciphertexts will be identical each time. Unfortunately,
deterministic encryption schemes can leak a lot of information. Consider the
example from lecture where the Linux penguin is encrypted using ECB-mode.
Even though all of the colors get mapped to new encrypted values, we can still
clearly see the penguin since pixels of the same color share the exact same value
after encryption.

To see why CBC-mode with a repeating IV becomes deterministic, consider the
simple case of always using an IV of 0 and encrypting the same message twice.
In this scenario, the first ciphertext block will always be Ek(m[0]), which will be
the same value for two identical plaintext messages; this will then propagate to
subsequent blocks and cause all of the ciphertext blocks to become equivalent.

When we use non-repeating IVs for CBC-mode, even if we encrypt the same
message multiple times, CBC-mode will generate distinct and random-looking
ciphertexts each time.

(b) Is a non-repeating IV enough? Imagine you sequentially picked IVs from a list of
non-repeating, but publicly-known, numbers, e.g., A Million Random Digits with
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100,000 Normal Deviates (RAND, 1955).

Say Alice encrypts the one-block long message m1 with initialization vector IV1

to get C1 and encrypts m2 using IV2 to get C2. She gives these to Mallory and
challenges her to tell which C came from which m.

Mallory knows that Alice’s next IV will be IV3, and can ask Alice to encrypt
messages for her (a chosen plaintext attack). Can Mallory distinguish the two
ciphertexts?

Solution: Yes. Mallory asks Alice for the encryption of m1⊕ IV1⊕ IV3. When
Alice runs CBC, the output will be the block cipher output for m1 ⊕ IV1. But
that’s just C1! So for CBC an IV must also be unpredictable, which is to say it
has to be kept secret until after the encryption is done.

Thus, IVs for CBC-mode encryption have two necessary criteria: (1) they must
not repeat across messages and (2) they must be unpredictable. It turns out we
can satisfy both criteria (with high probability) if we just generate a random
IV for every message we encrypt.
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