Computer Science 161 Fall 2018 Weaver

Software Security:
Defenses| o=,

Magic Numbers & Exploitation...

Weaver

Computer Science 161 Fall 2018

- Exploits can often be very brittle

* You see this on your Project 1: Your ./egg will not work on
someone else’s VM because the memory layout is different

- Making an exploit robust is an art unto itself:
e.g. EXTRABACON...

- EXTRABACON is an NSA exploit for Cisco ASA
“Adaptive Security Appliances”

* It had an exploitable stack-overflow vulnerability in the SNMP |

read operation

e But actual exploitation required two steps:
Query for the particular version (with an SMTP read)
Select the proper set of magic numbers for that version

ETERNALBLUE(screen)

. . Plugin Category: Special
- ETERNALBLUE is another NSA exploit -
* Stolen by the same group ("ShadowBrokers") Current and former officials defended the
which stole EXTRABACON agency’s handling of EternalBlue, saying
. E t | | . _t b _t that the NSA must use such volatile tools to
ventua y It Was Very robust... fulfill its mission of gathering foreign
e This was "god mode": intelligence. In the case of EternalBlue, the
remote exploit Windows through SMBvV1 intelligence haul was “unreal,” said one
(WlndOWS File Sharmg) The NSA also made upgrades to EternalBlue
o BUt in |t|a| |y It was JOk| ng Iy Cal Ied to address its penchant for crashing
targeted computers — a problem that
E E R NAL B L U ESC R E E N earned it the nickname “EternalBlueScreen”

« Because it would crash Windows computers in reference to the eerie blue screen often

' TR displayed b ters in distress.
more reliably than exploitation. isplayed by computers in distress

P
Prompt For Uariable Settings? [Yes] :

Reasoning About
Memory Safety

Computer Science 161 Fall 2018

- Memory Safety: No accesses to undefined memory
* "Undefined" is with respect to the semantics of the programming language

- Read Access:
* An attacker can read memory that he isn't supposed to

- Write Access:
* An attacker can write memory that she isn't supposed to

- Execute Access:
* An attacker can transfer control flow to memory that they isn't supposed to

Reasoning About Safety

- How can we have confidence that our code executes in a safe (and correct,
ideally) fashion?

Approach: build up confidence on a function-by-function / module-by-module
basis

Modularity provides boundaries for our reasoning:
* Preconditions: what must hold for function to operate correctly
* Postconditions: what holds after function completes

These basically describe a contract for using the module

Notions also apply to individual statements (what must hold for correctness;

what holds after execution)
e Stmt #1’s postcondition should logically imply Stmt #2’s precondition
* Invariants: conditions that always hold at a given point in a function (this particularly matters for loops)

Computer Science 161 Fall 2018 Weaver

int deref (int *p) {
return *p;

Precondition?

Computer Science 161 Fall 2018

/* requires: p !'= NULL
(and p a valid pointer) */
int deref (int *p) {
return *p;

}

Computer Science 161 Fall 2018

void *mymalloc(size t n) {
void *p = malloc(n) ;
if ('p) { perror("malloc"),; exit(l); }
return p;

Computer Science 161 Fall 2018

/* ensures: retval != NULL (and a valid
pointer) */
void *mymalloc(size t n) {

void *p = malloc(n);

if ('p) { perror("malloc"),; exit(l);

return p;

Computer Science 161 Fall 2018

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
total += a[i];
return total;

Computer Science 161 Fall 2018

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
total += a[i];
return total;

General correctness proof strategy for memory safety:

(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

Computer Science 161 Fall 2018

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
total += a[i];
return total;

General correctness proof strategy for memory safety:

(1) Identify each point of memory access?
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

Computer Science 161 Fall 2018

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
total += a[i];
return total;

General correctness proof strategy for memory safety:

(1) Identify each point of memory access
(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

Computer Science 161 Fall 2018

int sum(int a[], size t n) ({
int total = 0;
for (size t i=0; i<n; i++)
[* 22 */
total += a[i];
return total;

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires?

(3) Propagate requirement up to beginning of function

int sum(int a[], size t n) ({
int total = 0;
for (size t i=0; i<n; i++)
/* requires: a '= NULL &é&
0 <=1 && i < size(a) */
total += a[i];
return total;

}

Gen
(1)1

(2) Write down precondition it requires
(3) Propagate requirement up to beginning of function

Computer Science 161 Fall 2018

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
/* requires: a '= NULL &&
0 <=1i && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

Computer Science 161 Fall 2018

int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* requires: a '= NULL &&
0 <=1i && i < size(a) */
total += a[i];
return total;

Let’s simplify, given that a never changes.

Computer Science 161 Fall 2018

/* requires: a '= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];
return total;

Computer Science 161 Fall 2018

/* requires: a !'= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

Computer Science 161 Fall 2018

/* requires: a '= NULL */
int sum(int a[], size t n) { D)
int total = 0; .
for (size t i=0; i<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

20

Computer Science 161 Fall 2018

/* requires: a '= NULL */
int sum(int a[], size t n) { v/
int total = 0;
for (size t i=0; i<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += al[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

21

Computer Science 161 Fall 2018

/* requires: a '= NULL */
int sum(int a[], size t n) { v/
int total = 0;
for (size t i=0; i<n; 1i++)
/* requires: 0 <= i && i < size(a) */
total += al[i];
return total;

The 0 <= i partis clear, so let’s focus for now on the rest.

22

Computer Science 161 Fall 2018

/* requires: a !'= NULL */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];
return total;

23

Computer Science 161 Fall 2018

/* requires: a '= NULL */
int sum(int a[], size t n) {
int total = O; ?
for (size t i=0; i<n; i++)
/* requires: i < size(a) */
total += a[i];
return total;

}

General correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

24

Computer Science 161 Fall 2018

/* requires: a !'= NULL */
int sum(int a[], size t n) { ?
int total = 0;
for (size t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += al[i];
return total;

éeneral correctness proof strategy for memory safety:
(1) Identify each point of memory access

(2) Write down precondition it requires

(3) Propagate requirement up to beginning of function?

25

Computer Science 161 Fall 2018

/* requires: a !'= NULL */
int sum(int a[], size t n) { ?
int total = 0;
for (size t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += al[i];
return total;

How to prove our candidate invariant?
n <= size (a) is straightforward because n never changes.

26

Computer Science 161 Fall 2018

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += al[i];
return total;

27

Computer Science 161 Fall 2018

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */ ‘?

/* requires: i < size(a) */
total += a[i];
return total;

What abouti < n?

28

Computer Science 161 Fall 2018

/* requires: a !'= NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */)

/* requires: i < size(a) */ .
total += al[i];
return total;

What about i < n ? That follows from the loop condition.

29

Computer Science 161 Fall 2018

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += al[i];
return total;

At this point we know the proposed invariant will always hold...

30

Computer Science 161 Fall 2018

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
/* invariant?: i < n && n <= size(a) */
/* requires: i < size(a) */
total += al[i];
return total;

... and we’re done!

31

Computer Science 161 Fall 2018

/* requires: a != NULL && n <= size(a) */
int sum(int a[], size t n) ({
int total = O0;
for (size t i=0; i<n; i++)
/* invariant: a '= NULL &é&
0 <=1i && i < n && n <= size(a) */
total += af[i];
return total;

}

A more complicated loop might need us to use induction:

Base case: first entrance into loop.
Induction: show that postcondition of last statement of

loop, plus loop test condition, implies invariant.
32

Computer Science 161 Fall 2018

int sumderef (int *a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
total += *(a[i]);
return total;

33

Computer Science 161 Fall 2018

/* requires: a '= NULL &é&
size(a) >= n &&
2?27
int sumderef (int *a[], size t n) {
int total = 0;
for (size t i=0; i<n; i++)
total += *(a[i]);
return total;

*/

34

Computer Science 161 Fall 2018

/* requires: a '= NULL &é&
size(a) >= n &&
for all j in 0..n-1, a[j]

= NULL */

int sumderef (int *a[], size t n) {

int total = 0;

for (size t i=0; i<n; i++)
total += *(a[i]);

return total;

This may still be memory safe
but it can still have undefined behavior!

35

char *tbl[N]; /* N > 0, has type int */

Computer Science 161 Fall 2018

int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search (char *s) {

int i = hash(s);

return tbl[i] && (strcmp(tbl[i], s)==0);
}

36

char *tbl|[N];

Computer Science 161 Fall 2018

/* ensures: ?°?? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h $ N;

37

char *tbl|[N];

Computer Science 161 Fall 2018

/* ensures: ?°?? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h $ N;

38

char *tbl|[N];

Computer Science 161 Fall 2018

/* ensures: ?°?? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h $ N;

39

char *tbl|[N];

Computer Science 161 Fall 2018

/* ensures: ?°?? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h $ N;

40

char *tbl|[N];

Computer Science 161 Fall 2018

/* ensures: ?°?? */
int hash(char *s) {
int h = 17;
while (*s)
h = 257*h + (*s++) + 3;
return h $ N;

41

char *tbl[N];

Computer Science 161 Fall 2018

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s)
h = 257*h + (*s++) + 3;
return h % N;

}

bool search (char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0)
} Y]

char *tbl[N];

Computer Science 161 Fall 2018

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3;
return h % N;

}

bool search (char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0)
} 43

char *tbl[N];

Computer Science 161 Fall 2018

/* ensures: 0 <= retval && retval < N */
int hash(char *s) {

int h = 17; /* 0 <= h */
while (*s) /* 0 <= h */
h = 257*h + (*s++) + 3; /* 0 <= h */

return h % N;

}

bool search (char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0)
} 44

char *tbl[N];

Computer Science 161 Fall 2018

/* ensures:

int hash(char *s) {

}

int h = 17; /* 0
while (*s) /* 0
h = 257*h + (*s++) + 3; /* 0

return h $ N; /* 0 <= retval < N

bool search (char *s) {

}

int i = hash(s);
return tbl[i] && (strcmp(tbl[i],

0 <= retval && retval < N */

<= h */
<= h */
<= h */
*/

s)==0);

45

char *tbl[N];

Computer Science 161 Fall 2018

/* ensures: Oxval && retval < N */
int hash(char *s) {
int h = 17; /* 0 <= h */
while (*s) /* <= h_*/
h = 257*h + (*s++) + 3; /* */
return h $ N; /* 0 <= < N */
}

bool search (char *s) {
int 1 = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);
} 46

char *tbl[N];

Computer Scienc

e 161 Fall 2018

/* ensures: 0 <= retval && retval < N */

}

unsigned int hash (char *s) ({

unsigned int h = 17; /* 0 <= h
while (*s) /* 0 <= h
h = 257*h + (*s++) + 3; /* 0 <= h

return h $ N; /* 0 <= retval < N

bool search (char *s) {

}

unsigned int i = hash(s);
return tbl[i] && (strcmp(tbl[i], s)==0);

*/
*/
*/
*/

47

Or an alternative:
FFS Don't Use C or C++!1l!

Computer Science 161 Fall 2018

- Do you honestly think a human is going to go through this
process for all their code?
« Because that is what it takes to prevent undefined memory behavior in C or C++

* Instead, use a safe language:

* Turns "undefined" memory references into an immediate exception or program
termination

 Now you simply don't have to worry about buffer overflows and similar vulnerabilities

 Plenty to chose from:

« Python, Java, Go (project 2), Rust (if you need C's mostly-deterministicish
performance), Swift... Pretty much everything other than
C/C++/0Objective C

48

Oh, and it isn’t just the return address on the
stack...

Computer Science 161 Fall 2018

* Function pointers exist all over the place
* In C code & libraries

« Every C++ object with “virtua

Start of the object has a pointer to a table of function pointers (a pointer to the “vtable”)

methods:

- |f you can overwrite any one of those pointers...

* |t is effectively the same as overwriting the return address pointer on the stack:
When the function gets invoked the control flow is hijacked to point to the
attacker’s code

- Common target of heap overflows and use-after-free exploits
* Heap overflow: Overwrite the next object’s vtable pointer

« Use after free: Allocate a new object over the old space with a fake vtable pointer
49

But Suppose You Don’t Want
To’? What Then?

A Iarge back-and-forth arms race trying to prevent memory
errors from being exploitable for code injection

e An attacker can still use them to crash the program
* An attempt at defense-in-depth

Stack Canaries

Non-Executable Pages

Address-Space-Layout-Randomization + SelfRando

Control Flow Integrity

50

Stack Canaries...

Computer Science 161 Fall 2018

- Goal is to protect the return pointer Saven Fotern Ao
from being overwritten by a stack Saved Frame Ptr
buﬁer_ .. DO0000090009

data. ..

- When the program starts up, create a
random value
* The “stack canary” data.

* When returning in a function
* First check the canary against the stored value

data. ..

data...

aoeu

51

How To (Not) Kill the Canary...

Computer Science 161 Fall 2018 Weaver

* Find out what the canary is!
* A format string vulnerability
* An information leak elsewhere that dumps it
* Now can overwrite the canary with itself...

Write around the canary
* Format string vulnerabilities

Overflow in the heap, or a C++ object on the stack

QED: Bypassable but raises the bar

* A simple stack overflow doesn’t work anymore:
Need something a bit more robust

* Minor but nearly negligible performance impact
First deployed in 1997 with “StackGuard”
It requires a compiler flag to enable on Linux, but...
e THERE IS NO EXCUSE NOT TO HAVE THIS ENABLED!!! I'M LOOKING AT YOU CISCO ASA!

52

And Canary Entropy...

Computer Science 161 Fall 2018

+ On 32b x86 the canary is a 32b value
* |tis 64b on x86-64

- One byte of the canary is always x0

e Since some buffer overflows can’t include null bytes:
e.qg. if the vulnerability is in a bad call to strcpy

- But this means you can (possibly) brute-force the canary

* It would only requires an expected 224 tries or so!

Think of this as “you need to try ~16 million times”:
210 ~= 103

53

Non-Executable Pages

Computer Science 161 Fall 2018

- We remember how the TLB/page table has multiple bits:

e R ->Can Read
W -> Can Write
X -> Can Execute

« So lets maintain W xor X as a global property
 Now you can’t write code to the stack or heap

- Unfortunately that is insufficient
* “Return into libc”. Just set up the stack and “return” to exec
e “Return Oriented Programming”

54

Return Oriented Programming...

Computer Science 161 Fall 2018

* The deep-voodoo idea:

« Given a code library, find a set of fragments (gadgets) that when called together
execute the desired function

The "ROP Chain"
* [nject onto the stack a sequence of saved "return addresses" that will invoke this

- The lazy-hacker idea:
« Somebody else did the deep voodoo already. | can just google for "ROP
compiler" and download an existing tool
 Tools democratize things for attacker's:

» Yesterday's Ph.D. thesis or academic paper is today's Intelligence Agency tool
and tomorrow's Script Kiddie download

55

WAX is Somewhat Ubiquitous As Well

Computer Science 161 Fall 2018

- Effectively no performance impact
* Synergistic interaction with ASLR

 Does break some code...

e Stuff which dynamically generates code on the fly and doesn’t know about
WAX. So basically stuff that deserves to break

* FreeBSD deployed in 2003, Windows in 2004
* But don’t always have apps supporting it!

- Yet still often not ubiquitous on embedded systems
* See “Internet of Shit”, Cisco ASA security appliances...

56

Address Space Layout Randomization

Computer Science 161 Fall 2018

- Start things more randomly

* Especially on 64b operating systems with 64b memory space:
64b operating systems tend to be significantly harder to exploit

- Randomly relocate everything:
* Every library, the start of the stack & heap, etc...

* With 64b of space you have lots of entropy

Everything needs to be relocatable anyway:
Modern systems use relocatable code and link at runtime

« When combined with WAX, need an information leak

« Often a separate vulnerability, such as a way to find the address of a function
* To find the magic offset needed to modify your ROP chain

57

These Defenses-In-Depth in Practice...

- Apple iOS uses ASLR in the kernel and userspace, WAX whenever possible
* All applications are sandboxed to limit their damage: The kernel is the TCB

- The "Trident" exploit was used by a spyware vendor, the NSO group, to exploit
iPhones of targets

+ So to remotely exploit an iPhone, the NSO group's exploit had to...
* Exploit Safari with a memory corruption vulnerability
Gains remote code execution within the sandbox: write to a R/W/X page as part of the JavaScript JIT
* Exploit a vulnerability to read a section of the kernel stack
Saved return address & knowing which function called breaks the ASLR
* Exploits a vulnerability in the kernel to enable code execution

* Full details:

https://info.lookout.com/rs/051-ESQ-475/images/pegasus-exploits-technical-
details.pdf

58

Why does software have vulnerabilities?

Computer Science 161 Fall 2018

- Programmers are humans.

And humans make mistakes.
e Use tools

* Programmers often aren’t security-aware.
e Learn about common types of security flaws.

- Programming languages aren’t designed well
for security.
« Use better languages (Java, Python, ...).

I've Made a
Huge Mistake

59

Testing for Software Security Issues

Computer Science 161 Fall 2018 Weaver

- What makes testing a program for security problems difficult?

* We need to test for the absence of something

Security is a negative property!
“nothing bad happens, even in really unusual circumstances”

* Normal inputs rarely stress security-vulnerable code

- How can we test more thoroughly?

* Random inputs (fuzz testing)
* Mutation
* Spec-driven
- How do we tell when we’ve found a problem?

* Crash or other deviant behavior

- How do we tell that we’ve tested enough?
* Hard: but code-coverage tools can help

60

Working Towards Secure Systems

Computer

- Along with securing individual components, we need to
keep them up to date ...

Scie 161 Fall 2018

- What’s hard about patching?

e (Can require restarting production systems
e (Can break crucial functionality

61

Computer Science 161 Fall 2018 Weaver

; Threat Level: .GR'EE'NI--- Storm Center Tools |

ISC Diary

Refresh Latest Diaries

Oracle quitely releases Java 7ul3 early

Published: 2013-02-01,

Last Updated: 2013-02-01 21:59:59 UTC = = —
by Jim Clausing (Version: 2) (® | F Recommend (@) ¥ Tweet a | +1

[
T

2 comment(s)

First off, a huge thank you to readers Ken and Paul for pointing out that Oracle has released Java 7ul3. As the CPU (Critical
Patch Update) bulletin points out, the release was originally scheduled for 19 Feb, but was moved up due to the active
exploitation of one of the critical vulnerabilities in the wild. Their Risk Matrix lists 50 CVEs, 49 of which can be remotely
exploitable without authentication. As Rob discussed in his diary 2 weeks ago, now is a great opportunity to determine if you
really need Java installed (if not, remove it) and, if you do, take additional steps to protect the systems that do still require it. |
haven't seen jusched pull this one down on my personal laptop yet, but if you have Java installed you might want to do this one
manually right away. On a side note, we've had reports of folks who installed Java 7ull and had it silently (and unexpectedly)
remove Java 6 from the system thus breaking some legacy applications, so that is something else you might want to be on the
lookout for if you do apply this update.

62

Working Towards Secure Systems

Computer Science 161 Fall 2018

- Along with securing individual components, we need to
keep them up to date ...

- What’s hard about patching?
e (Can require restarting production systems
e (Can break crucial functionality

 Management burden:
It never stops (the “patch treadmill”) ...

63

linfo security|

News

Computer Science 161 Fall 2018 m
IT administrators give thanks for

light Patch Tuesday

07 November 2011

Microsoft is giving IT administrators a break for
Thanksgiving, with only four security bulletins
for this month’s Patch Tuesday.

<Only one of the bulletins is rated criticathy Microsoft, which

addresses a flaw that could result in remote code execution
attacks for the newer operating systems — Windows Vista,
Windows 7, and Windows 2008 Server R2.

The critical bulletin has an exploitability rating of 3, suggesting-
64

Working Towards Secure Systems

Computer Science 161 Fall 2018 Weaver

- Along with securing individual components, we need to keep them up
to date ...

- What’s hard about patching?
« Can require restarting production systems
* Can break crucial functionality

 Management burden:

It never stops (the “patch treadmill”) ...
... and can be difficult to track just what’s needed where

« Other (complementary) approaches?

* Vulnerability scanning: probe your systems/networks for known flaws

* Penetration testing (“pen-testing”): pay someone to break into your systems ...

... provided they take excellent notes about how they did it!
65

RISK ASSESSMENT SECURITY & HACKTIVISM

Extremely critical Ruby on Rails bug
threatens more than 200,000 sites

Servers that run the framework are by default vulnerable to remote code attacks.

by Dan Goodin - Jan 8 2013, 4:35pm PST
HARDENING m
Hundreds of thousands of websites are potentially at risk following the discovery of an extremely
critical vulnerability in the Ruby on Rails framework that gives remote attackers the ability to execute
malicious code on the underlying servers.

The bug is present in Rails versions spanning the past six years and in default configurations gives
hackers a simple and reliable way to pilfer database contents, run system commands, and cause
websites to crash, according to Ben Murphy, one of the developers who has confirmed the
vulnerability. As of last week, the framework was used by more than 240,000 websites, including
Github, Hulu, and Basecamp, underscoring the seriousness of the threat.

"It is quite bad,” Murphy told Ars. "An attack can send a request to any Ruby on Rails sever and then
execute arbitrary commands. Even though it's complex, it's reliable, so it will work 100 percent of the
time."

Murphy said the bug leaves open the possibility of attacks that cause one site running rails to seek
out and infect others, creating a worm that infects large swaths of the Internet. Developers with the
Metasploit framework for hackers and penetration testers are in the process of creating a module
that can scan the Internet for vulnerable sites and exploit the bug, said HD Moore, the CSO of
Rapid7 and chief architect of Metasploit.

Maintainers of the Rails framework are@o update their systems as so@o

66

Some Approaches for
Building Secure Software/Systems

* Run-time checks
* Automatic bounds-checking (overhead)
 What do you do if check fails?

- Address randomization
« Make it hard for attacker to determine layout
* But they might get lucky / sneaky

- Non-executable stack, heap

* May break legacy code
» See also Return-Oriented Programming (ROP)

« Monitor code for run-time misbehavior
* E.g., illegal calling sequences

* But again: what do you if detected?
67

Approaches for Secure Software, con’t

Computer Science 161 Fall 2018

- Program in checks / “defensive programming”
* E.g., check for null pointer even though sure pointer will be valid
* Relies on programmer discipline

- Use safe libraries
« E.g. strlcpy, not strcpy; snprintf, not sprintf

e Relies on discipline or tools ...
- Bug-finding tools
« Excellent resource as long as not many false positives

- Code review
« (Can be very effective ... but expensive

68

Approaches for Secure Software, con’t

Computer Science 161 Fall 2018

- Use a safe language
 E.g., Java, Python, C#, Go, Rust
e Safe = memory safety, strong typing, hardened libraries
* Installed base? Programmer base? Performanee?

- Structure user input
e Constrain how untrusted sources can interact with the system
* Perhaps by implementing a reference monitor

- Contain potential damage
* E.g., run system components in jails or VMs
* Think about privilege separation

69

Real World Security: Securing your cellphone...
Look on the back:

Computer Science 161 Fall 2018

* Does it say "iPhone"?
* Keep it up to date and be happy

* Does it say "Nexus" or "Pixel"?
* Keep it up to date and be happy — oty Boan

- Does it say anything else? | v .
* Toss it in the trash and buy an iPhone or a Pixel

- Why? The Android Patch Model...

* "Imagine if your Windows update needed to be approved by Intel, Dell, and
Comcast... And none of them cared or had a reason to care"

70

