RNG & Public Key

DOES A BLOCKCHAIN SOLVE...

NO!

-@MattBlaze

THE MAIN VALUE OF UNDERSTANDING BLOCKCHAINS IS SO THAT YOU REALIZE THE TECHNICAL REASONS WHY YOU NEVER NEED ONE.–@PWNALLTHETHINGS
Announcements:

• Midterm 1: Sept 25, 8pm-10pm
• Which room should you go to?
 • Take the last 2 digits of your student ID:
 • <22: 145 Dwinelle
 • >= 22 & < 44: 10 Evans
 • >= 44 & < 66: Hearst Field Annex A1
 • >= 66 & < 83: VLSB 2040
 • >= 83: VLSB 2060
• 1 page cheat-sheet, double sided, handwritten
• DSP students needing extra time, students with a conflicting midterm, use the exam coordination Piazza folder
 • Still working on arrangement for Grace Hopper midterm: Probably will be on the 26th after the keynote
Combining Entropy

• The general procedure is to combine various sources of entropy

• The goal is to be able to take multiple crappy sources of entropy

• Measured in how many bits:
 A single flip of a coin is 1 bit of entropy

• And combine into a value where the entropy is the minimum of the sum of all entropy sources (maxed out by the # of bits in the hash function itself)

• \(N-1 \) bad sources and 1 good source -> good pRNG state
Pseudo Random Number Generators
(aka Deterministic Random Bit Generators)

• Unfortunately one needs a lot of random numbers in cryptography
 • More than one can generally get by just using the physical entropy source

• Enter the pRNG or DRBG
 • If one knows the state it is entirely predictable
 • If one doesn't know the state it should be indistinguishable from a random string

• Three operations
 • Instantiate: (aka Seed) Set the internal state based on the real entropy sources
 • Reseed: Update the internal state based on both the previous state and additional entropy
 • The big different from a simple stream cipher
 • Generate: Generate a series of random bits based on the internal state
 • Generate can also optionally add in additional entropy

• instantiate(entropy)
 reseed(entropy)
 generate(bits, {optional entropy})
Properties for the pRNG

• Can a pRNG be truly random?
 • No. For seed length s, it can only generate at most 2^s distinct possible sequences.

• A cryptographically strong pRNG “looks” truly random to an attacker
 • Attacker cannot distinguish it from a random sequence
Prediction and Rollback Resistance

• A pRNG should be predictable only if you know the internal state
 • It is this predictability which is why it's called "pseudo"

• If the attacker does not know the internal state
 • The attacker should not be able to distinguish a truly random string from one generated by the pRNG

• It should also be rollback-resistant
 • Even if the attacker finds out the state at time T, they should not be able to determine what the state was at T-1
 • More precisely, if presented with two random strings, one truly random and one generated by the pRNG at time T-1, the attacker should not be able to distinguish between the two
Why "Rollback Resistance" is Essential

• Assume attacker, at time T, is able to obtain all the internal state of the pRNG
 • How? E.g. the pRNG screwed up and instead of an IV, released the internal state, or the pRNG is bad...

• Attacker observes how the pRNG was used
 • $T_{-1} = \text{Session key}$
 • $T_0 = \text{Nonce}$

• Now if the pRNG doesn't resist rollback, and the attacker gets the state at T_0, attacker can know the session key! And we are back to...
More on Seeding and Reseeding

• Seeding should take all the different physical entropy sources available
 • If one source has 0 entropy, it must not reduce the entropy of the seed
 • We can shove a whole bunch of low-entropy sources together and create a high-entropy seed

• Reseeding adds in even more entropy
 • $F(\text{internal_state}, \text{new material})$
 • Again, even if reseeding with 0 entropy, it must not reduce the entropy of the seed

• Entropy (most of the time) needs to be confidential
Probably the best pRNG/DRBG: HMAC_DRBG

- Generally believed to be the best
- Accept no substitutes!

- Two internal state registers, V and K
- Each the same size as the hash function's output

- V is used as (part of) the data input into HMAC, while K is the key

- If you can break this pRNG you can *either break the underlying hash function* or *break a significant assumption about how HMAC works*

- Yes, security proofs sometimes are a very good thing and actually do work
HMAC_DRBG Generate

• The basic generation function

• Remarks:
 • It requires one HMAC call per blocksize-bits of state
 • Then two more HMAC calls to update the internal state

• Prediction resistance:
 • If you can distinguish new K from random when you don’t know old K:
 You've distinguished HMAC from a random function! Which means you've either broken the hash or the HMAC construction

• Rollback resistance:
 • If you can learn old K and V:
 You've reversed the hash function!

```javascript
function hmac_drbg_generate (state, n) {
    tmp = ""
    while(len(tmp) < N){
        state.v = hmac(state.k,state.v)
        tmp = tmp || state.v
    }
    // Update state w no input
    state.k = hmac(state.k, state.v || 0x00)
    state.v = hmac(state.k, state.v)
    // Return the first N bits of tmp
    return tmp[0:N]
}
```
HMAC_DRBG Update

- Used instead of the "no-input update" when you have additional entropy on the generate call
- Used standalone for both instantiate (**state.k = state.v = 0**) and reseed
- Designed so that even if the attacker controls the input but doesn't know **k**:
 - The attacker should not be able to predict the new **k**

```javascript
function hmac_drbg_update (state, input) {
    state.k = hmac(state.k, state.v || 0x00 || input);
    state.v = hmac(state.k, state.v);
    state.k = hmac(state.k, state.v || 0x01 || input);
    state.v = hmac(state.k, state.v);
}
```
Stream ciphers

- Block cipher: fixed-size, stateless, requires “modes” to securely process longer messages
- Stream cipher: keeps state from processing past message elements, can continually process new elements
- Common approach: “one-time pad on the cheap”:
 - XORs the plaintext with some “random” bits
 - But: random bits \neq the key (as in one-time pad)
 - Instead: output from cryptographically strong pseudorandom number generator (pRNG)
 - Anyone who actually calls this a "One Time Pad" is selling snake oil!
Building Stream Ciphers

- Encryption, given key K and message M:
 - Choose a random value IV
 - $E(M, K) = pRNG(K, IV) \oplus M$

- Decryption, given key K, ciphertext C, and initialization vector IV:
 - $D(C, K) = pRNG(K, IV) \oplus C$

- Can encrypt message of any length because pRNG can produce any number of random bits...
 - But in practice, for an n-bit seed pRNG, stop at $2^{n/2}$. Because, of course...
Using a PRNG to Build a Stream Cipher

Using a PRNG to Build a Stream Cipher

\[M_i \oplus \text{Keystream} = C_i \]

(i.e., \(M_i \): ith message of plaintext)

Alice

(Small) K, IV

PRNG

Keystream

Bob

(Small) K, IV

PRNG

Keystream

\(C_i \)

M_i: ith message of plaintext
CTR mode is (mostly) a stream cipher

- \(E(\text{ctr}, K) \) should look like a series of pseudo random numbers...
- But after a large amount it is *slightly* distinguishable!
- Since it is actually a pseudo-random permutation...
- For a cipher using 128b blocks, you will never get the same 128b number until you go all the way through the \(2^{128} \) possible entries on the counter
- Reason why you want to stop after \(2^{64} \)
 - if you are foolish enough to use CTR mode in the first place

Also very minor information leakage:
- If \(C_i = C_j \), for \(i \neq j \), it follows that \(M_i \neq M_j \)
UUID: Universally Unique Identifiers

• You got to have a "name" for something...
 • EG, to store a location in a filesystem

• Your name **must** be unique...
 • And your name **must** be unpredictable!

• Just chose a *random* value!
 • UUID: just chose a 128b random value
 • Well, it ends up being a 122b random value with some signaling information
 • A good UUID library uses a cryptographically-secure pRNG that is properly seeded

• Often written out in hex as:
 • 00112233-4455-6677-8899-aabbccddeeff
What Happens When The Random Numbers Goes Wrong...

- **Insufficient Entropy:**
 - Random number generator is seeded without enough entropy

- **Debian OpenSSL CVE-2008-0166**
 - In "cleaning up" OpenSSL (Debian 'bug' #363516), the author 'fixed' how OpenSSL seeds random numbers
 - Because the code, as written, caused Purify and Valgrind to complain about reading uninitialized memory
 - Unfortunate cleanup reduced the pRNG's seed to be **just** the process ID
 - So the pRNG would only start at one of ~30,000 starting points

- **This made it easy to find private keys**
 - Simply set to each possible starting point and generate a few private keys
 - See if you then find the corresponding public keys anywhere on the Internet

[Link: http://blog.dieweltistgarnichtso.net/Caprica,-2-years-ago]
And Now Lets Add Some RNG Sabotage...

- The Dual_EC_DRBG
 - A pRNG pushed by the NSA behind the scenes based on Elliptic Curves
 - It relies on two parameters, P and Q on an elliptic curve
 - The person who generates P and selects $Q = eP$ can predict the random number generator, regardless of the internal state
- It also *sucked!*
 - It was horribly slow and even had subtle biases that shouldn't exist in a pRNG: You could distinguish the upper bits from random!
- Now this was spotted fairly early on...
 - Why should anyone use such a horrible random number generator?
Well, anyone not paid that is...

- RSA Data Security accepted 30 pieces of silver $10M from the NSA to implement Dual_EC in their RSA BSAFE library
 - And silently make it the default pRNG
- Using RSA's support, it became a NIST standard
 - And inserted into other products...
- And then the Snowden revelations
 - The initial discussion of this sabotage in the NY Times just vaguely referred to a Crypto talk given by Microsoft people...
 - That everybody quickly realized referred to Dual_EC
But this is insanely powerful...

- It isn't just forward prediction but being able to run the generator backwards!
 - Which is why Dual_EC is so nasty: Even if you know the internal state of HMAC_DRBG it has rollback resistance!

- In TLS (HTTPS) and Virtual Private Networks you have a motif of:
 - Generate a random session key
 - Generate some other random data that's public visible
 - EG, the IV in the encrypted channel, or the "random" nonce in TLS
 - Oh, and an NSA sponsored "standard" to spit out even more "random" bits!

- If you can run the random number generator backwards, you can find the session key
It Got Worse: Sabotaging Juniper

- Juniper also used Dual_EC in their Virtual Private Networks
 - "But we did it safely, we used a different Q"
- Sometime later, someone else noticed this...
 - "Hmm, P and Q are the keys to the backdoor... Lets just hack Juniper and rekey the lock!"
 - And whoever put in the first Dual_EC then went "Oh crap, we got locked out but we can’t do anything about it!"
- Sometime later, someone else goes...
 - "Hey, lets add an ssh backdoor"
- Sometime later, Juniper goes
 - "Whoops, someone added an ssh backdoor, lets see what else got F'ed with, oh, this # in the pRNG"
- And then everyone else went
 - "Ohh, patch for a backdoor. Lets see what got fixed. Oh, these look like Dual_EC parameters..."
Sabotaging "Magic Numbers"

In General

• Many cryptographic implementations depend on "magic" numbers
 • Parameters of an Elliptic curve
 • Magic points like P and Q
 • Particular prime p for Diffie/Hellman
 • The content of S-boxes in block ciphers

• Good systems should cleanly describe how they are generated
 • In some sound manner (e.g. AES's S-boxes)
 • In some "random" manner defined by a pRNG with a specific seed
 • Eg, seeded with "Nicholas Weaver Deserves Perfect Student Reviews"
 Needs to be very low entropy so the designer can't try a gazillion seeds
Because Otherwise You Have Trouble...

• Not only Dual-EC's P and Q
• Recent work: 1024b Diffie/Hellman moderately impractical...
 • But you can create a sabotaged prime that is $1/1,000,000$ the work to crack! And the most often used "example" p's origin is lost in time!

• It can cast doubt **even when a design is solid**:
 • The DES standard was developed by IBM but with input from the NSA
 • Everyone was suspicious about the NSA tampering with the S-boxes...
 • They did: The NSA made them strong against an attack they knew but the public didn’t
 • The NSA-defined elliptic curves P-256 and P-384
 • I trust them because they are in Suite-B/CNSA so the NSA uses them for TS communication:
 A backdoor here would be absolutely unacceptable... but only because I actually believe the NSA wouldn't go and try to shoot itself in the head!
So Far...

- We have **symmetric** key encryption...
 - But that requires Alice and Bob knowing a key in advance
- We have **symmetric** integrity with MACs...
 - But anyone who can *verify* the integrity can also modify the message
- Goal of public key is to change that
 - Allows creation of a symmetric key in the presence of an adversary
 - Allows creation of a message to Alice by anybody but only Alice can decrypt
 - Allows creation of a message exclusively by Alice than anybody can verify
Our Roadmap...

• Public Key:
 • Something *everyone* can know

• Private Key:
 • The secret belonging to a specific person

• Diffie/Hellman:
 • Provides key exchange with no pre-shared secret

• ElGamal & RSA:
 • Provide a message to a recipient only knowing the recipient's *public key*

• DSA & RSA signatures:
 • Provide a message that anyone can prove was generated with a *private key*
Diffie-Hellman Key Exchange

• What if instead they can somehow generate a random key when needed?
• Seems impossible in the presence of Eve observing all of their communication …
 • How can they exchange a key without her learning it?
• But: actually is possible using public-key technology
 • Requires that Alice & Bob know that their messages will reach one another without any meddling
• Protocol: Diffie-Hellman Key Exchange (DHE)
 • The E is "Ephemeral", we use this to create a temporary key for other uses and then forget about it
diffie-hellman key exchange

1. Everyone agrees in advance on a well-known (large) prime p and a corresponding g: $1 < g < p-1$
2. Alice picks random secret 'a': $1 < a < p-1$

3. Bob picks random secret 'b': $1 < b < p-1$
DHE

4. Alice sends $A = g^a \mod p$ to Bob
5. Bob sends $B = g^b \mod p$ to Alice
6. Alice knows \{a, A, B\}, computes
 \[K = B^a \mod p = (g^{b^a}) = g^{ba} \mod p \]
7. Bob knows \{b, A, B\}, computes
 \[K = A^b \mod p = (g^a)^b = g^{ab} \mod p \]
8. K is now the shared secret key.
While Eve knows \(\{p, g, g^a \mod p, g^b \mod p\} \), believed to be \textit{computationally infeasible} for her to then deduce \(K = g^{ab} \mod p \).

She can easily construct \(A \cdot B = g^a \cdot g^b \mod p = g^{a+b} \mod p \).

But computing \(g^{ab} \) requires ability to take \textit{discrete logarithms} mod \(p \).
This is Ephemeral Diffie/Hellman

- \(K = g^{ab} \mod p \) is used as the basis for a "session key"
 - A symmetric key used to protect subsequent communication between Alice and Bob
 - In general, public key operations are vastly more expensive than symmetric key, so it is mostly used just to agree on secret keys, transmit secret keys, or sign hashes
 - If either \(a \) or \(b \) is random, \(K \) is random

- When Alice and Bob are done, they discard \(K, a, b \)
 - This provides \textit{forward secrecy}: Alice and Bob don't retain any information that a later attacker who can compromise Alice or Bob's secrets could use to decrypt the messages exchanged with \(K \).
Diffie Hellman is part of more generic problem

- This involved deep mathematical voodoo called "Group Theory"
 - Its actually done under a group G

- Two main groups of note:
 - Numbers mod p with generator g
 - Point addition in an elliptic curve C
 - Usually identified by number, eg. p256, p384 (NSA-developed curves) or Curve25519 (developed by Dan Bernstein, also 256b long)

- So EC (Elliptic Curve) == different group
 - Thought to be harder so fewer bits: 384b ECDHE \approx 3096b DHE
 - But otherwise, its "add EC to the name" for something built on discrete log
But Its Not That Simple

- What if Alice and Bob aren't facing a passive eavesdropper
 - But instead are facing Mallory, an **active** Man-in-the-Middle
- Mallory has the ability to change messages:
 - Can remove messages and add his own
- Lets see... Do you think DHE will still work as-is?
Attacking DHE as a MitM

What happens if instead of Eve watching, Alice & Bob face the threat of a hidden Mallory (MITM)?
The MitM Key Exchange

2. Alice picks random secret ‘a’: $1 < a < p-1$

3. Bob picks random secret ‘b’: $1 < b < p-1$
4. Alice sends $A = g^a \mod p$ to Bob
5. Mallory prevents Bob from receiving A
6. Mallory generates her own a', b'
7. Mallory sends $A' = g^{a'} \mod p$ to Bob
The text on the page is:

8. The same happens for Bob and B/B':

\[A' = g^{a'} \mod p \]

\[g^{b'} \mod p = B \]

Where:
- \(p, g \) are public keys.
- \(a, b \) are secret keys.
- \(A, A' \) are computed values.
- \(a', b' \) are the secret keys for Bob.

The diagram shows Alice and Bob performing operations with Mallory intercepting the communications.
8. The same happens for Bob and B'.

To decrypt, Alice computes:

$$A = g^a \mod p$$

Bob encrypts:

$$A' = g^{a'} \mod p$$

Mallory intercepts A':

$$B' = g^{b'} \mod p$$

Mallory decrypts B'. Correcting with the same key:

$$g^b \mod p = B$$
9. Alice and Bob now compute keys they share with ... Mallory!
10. Mallory can relay encrypted traffic between the two ...
10'. Modifying it or making stuff up however she wishes

\[A = g^a \mod p \]
\[B' = g^{b'} \mod p \]

\[K'_1 = (B')^a \mod p = (g^{b'})^a \mod p \]
\[K'_2 = B'^a \mod p = g^{b'a} \mod p \]

\[K'_1 = A^{b'} \mod p = g^{ab'} \mod p \]
\[K'_2 = (A')^b \mod p = g^{a'b} \mod p \]
So We Will Want More...

• This is online:
 • Alice and Bob actually need to be active for this to work...

• So we want offline encryption:
 • Bob can send a message to Alice that Alice can read at a later date

• And authentication:
 • Alice can publish a message that Bob can verify was created by Alice later
 • Can also be used as a building-block for eliminating the MitM in the DHE key exchange:
 Alice authenticates A, Bob verifies that he receives A not A'.
Public Key Cryptography #1: RSA

- Alice generates two **large** primes, \(p \) and \(q \)
 - They should be generated randomly:
 Generate a large random number and then use a "primality test":
 A **probabilistic** algorithm that checks if the number is prime
 - Alice then computes \(n = p \times q \) and \(\varphi(n) = (p-1)(q-1) \)
 - \(\varphi(n) \) is Euler's totient function, in this case for a composite of two primes
 - Chose random \(2 < e < \varphi(n) \)
 - \(e \) also needs to be relatively prime to \(\varphi(n) \) but it can be small
 - Solve for \(d = e^{-1} \mod \varphi(n) \)
 - You can't solve for \(d \) without knowing \(\varphi(n) \), which requires knowing \(p \) and \(q \)
 - \(n, e \) are public, \(d, p, q, \) and \(\varphi(n) \) are secret
RSA Encryption

• Bob can easily send a message \(m \) to Alice:
 • Bob computes \(c = m^e \mod n \)
 • Without knowing \(d \), it is believed to be intractable to compute \(m \) given \(c, e, \) and \(n \)
 • But if you can get \(p \) and \(q \), you can get \(d \):
 It is not known if there is a way to compute \(d \) without also being able to factor \(n \),
 but it is known that if you can factor \(n \), you can get \(d \).
 • And factoring is believed to be hard to do
• Alice computes \(m = c^d \mod n = m^{ed} \mod n \)
• Time for some math magic...
RSA Encryption/Decryption, con’t

• So we have: \(\text{D}(C, K_D) = (M^{e\cdot d}) \mod n \)

• Now recall that \(d \) is the multiplicative inverse of \(e \), modulo \(\varphi(n) \), and thus:
 \[
 e \cdot d = 1 \mod \varphi(n) \quad \text{(by definition)}
 \]
 \[
 e \cdot d - 1 = k \cdot \varphi(n) \quad \text{for some } k
 \]

• Therefore \(\text{D}(C, K_D) = M^{e \cdot d} \mod n = (M^{e \cdot d - 1}) \cdot M \mod n \)
 \[
 = (M^{k \varphi(n)}) \cdot M \mod n
 \]
 \[
 = [(M^{\varphi(n)})^k] \cdot M \mod n
 \]
 \[
 = (1^k) \cdot M \mod n \quad \text{by Euler’s Theorem: } a^{\varphi(n)} \mod n = 1
 \]
 \[
 = M \mod n = M
 \]

(believed) Eve can recover \(M \) from \(C \) iff Eve can factor \(n=p\cdot q \)
But It Is Not That Simple...

• What if Bob wants to send the same message to Alice twice?
 • Sends $m^e \mod n_a$ and then $m^e \mod n_a$
 • Oops, not IND-CPA!

• What if Bob wants to send a message to Alice, Carol, and Dave:
 • $m^e \mod n_a$
 • $m^e \mod n_b$
 • $m^e \mod n_c$
 • This ends up leaking information an
eavesdropper can use especially if $3 = e_a = e_b = e_c$!

• Oh, and problems if both e and m are small...

• As a result, you can not just use plain RSA:
 • You need to use a "padding" scheme that makes the
input random but reversible
RSA-OAEP
(Optimal asymmetric encryption padding)

- A way of processing m with a hash function & random bits
 - Effectively "encrypts" m replacing it with $X = [m,0...] \oplus G(r)$
 - G and H are hash functions (EG SHA-256)
 - $k_0 = \# \text{ of bits of randomness}, \text{len}(m) + k_1 + k_0 = n$
 - Then replaces r with $Y = H(G(r) \oplus [m,0...]) \oplus R$
 - This structure is called a "Feistel network":
 - It is always designed to be reversible.
 - Many block ciphers are based on this concept applied multiple times with G and H being functions of k rather than just fixed operations

- This is more than just block-cipher padding (which involves just adding simple patterns)
 - Instead it serves to both pad the bits and make the data to be encrypted "random"
But Its Not That Simple...

Timing Attacks

- Using normal math, the **time** it takes for Alice to decrypt c depends on c and d
- Ruh roh, this can leak information...
- More complex RSA implementations take advantage of knowing p and q directly... but also leak timing
- People have used this to guess and then check the bits of q on OpenSSL
- And even more subtle things are possible...
So How to Find Bob's Key?

• Lots of stuff later, but for now... The Leap of Faith!

• Alice wants to talk to Bob:
 • "Hey, Bob, tell me your public key!"

• Now on all subsequent times...
 • "Hey, Bob, tell me your public key", and check to see if it is different from what Alice remembers

• Works assuming the first time Alice talks to Bob there isn't a Man-in-the-Middle
 • ssh uses this
RSA Signatures...

- Alice computes a hash of the message $H(m)$
- Alice then computes $s = (H(m))^d \mod n$
- Anyone can then verify
 - $v = s^e \mod m = ((H(m))^d)^e \mod n = H(m)$
- Once again, there are "F-U"s...
 - Have to use a proper encoding scheme to do this properly and all sort of other traps
 - One particular trap: a scenario where the attacker can get Alice to repeatedly sign things (an "oracle")
But Signatures Are Super Valuable...

- They are how we can prevent a MitM!
- If Bob knows Alice's key, and Alice knows Bob's...
 - How will be "next time"
- Alice doesn't just send a message to Bob...
 - But creates a random key \(k \)
 - Sends \(E(M, K_{\text{sess}}), E(K_{\text{sess}}, B_{\text{pub}}), S(H(M), A_{\text{priv}}) \)
- Only Bob can decrypt the message, and Bob can verify the message came from Alice
 - So Mallory is SOL!
RSA Isn't The Only Public Key Algorithm

• Isn't RSA enough?
 • RSA isn't particularly compact or efficient: dealing with 2000b (comfortably secure) or 3000b (NSA-paranoia) bit operations
 • Can we get away with fewer bits?
 • Well, Diffie-Hellman isn't any better...
 • But *elliptic curve* Diffie-Hellman is

• RSA also had some patent issues
 • So an attempt to build public key algorithms around the Diffie-Hellman problem
El-Gamal

• Just like Diffie-Hellman...
• Select \(p \) and \(g \)
 • These are public and can be shared:
 Note, they need to be carefully considered how to create \(p \) and \(g \)
 Math beyond the level of this class

• Alice chooses \(x \) randomly as her private key
• And publishes \(h = g^x \mod p \) as her public key

• Bob, to encrypt \(m \) to Alice...
 • Selects a random \(y \), calculates \(c_1 = g^y \mod p \), \(s = h^y \mod p = g^{xy} \mod p \)
 • \(s \) becomes a shared secret between Alice and Bob
 • Maps message \(m \) to create \(m' \), calculates \(c_2 = m' \times s \mod p \)

• Bob then sends \(\{c_1, c_2\} \)
El-Gamal Decryption

- Alice first calculates $s = c_1^x \mod p$
- Then Alice calculates $m' = c_2 \cdot s^{-1} \mod p$
- Then Alice calculates the inverse of the mapping to get m

Of course, there are problems...

- Attacker can always change m' to $2m'$
- What if Bob screws up and reuses y?
- $c_2 = m_1' \cdot s \mod p$
- $c_2' = m_2' \cdot s \mod p$
- Ruh roh, this leaks information:
 - $c_2 / c_2' = m_1' / m_2'$
- So if you know m_1...
In Practice: Session Keys...

• You use the public key algorithm to encrypt/agree on a session key.

• And then encrypt the real message with the session key.

• You **never** actually encrypt the message itself with the public key algorithm.

Why?

• Public key is **slow**... Orders of magnitude slower than symmetric key.

• Public key may cause weird effects:
 • EG, El Gamal where an attacker can change the message to $2m$...
 • If m had meaning, this would be a problem.
 • But if it just changes the encryption and MAC keys, the main message won't decrypt.
DSA Signatures...

- Again, based on Diffie-Hellman

 - Two initial parameters, \(L \) and \(N \), and a hash function \(H \)
 - \(L = \) key length, eg 2048
 - \(N \leq \text{len}(H) \), e.g. 256

 - An N-bit prime \(q \), an L-bit prime \(p \) such that \(p - 1 \) is a multiple of \(q \), and
 \(g = h^{(p-1)/q} \mod p \) for some arbitrary \(h \) (\(1 < h < p - 1 \))
 - \(\{p, q, g\} \) are public parameters

- Alice creates her own random private key \(x < q \)

 - Public key \(y = g^x \mod p \)
Alice's Signature...

- Create a random value $k < q$
 - Calculate $r = (g^k \mod p) \mod q$
 - If $r = 0$, start again
- Calculate $s = k^{-1} (H(m) + xr) \mod q$
 - If $s = 0$, start again
- Signature is $\{r, s\}$ (Advantage over an El-Gamal signature variation: Smaller signatures)

Verification
- $w = s^{-1} \mod q$
- $u_1 = H(m) * w \mod q$
- $u_2 = r * w \mod q$
- $v = (g^{u_1} y^{u_2} \mod p) \mod q$
- Validate that $v = r$
But Easy To Screw Up...

- **k** is not just a nonce... It must be random and **secret**

 - If you know **k**, you can calculate **x**

- And even if you just reuse a random **k**... for two signatures sa and sb

 - A bit of algebra proves that \(k = (H_A - H_B) / (s_a - s_b) \)

- A good reference:
 - How knowing \(k \) tells you \(x \):
 https://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/
 - How two signatures tells you \(k \):
 https://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/
And **NOT** theoretical: Sony Playstation 3 DRM

- The PS3 was designed to only run **signed** code
 - They used ECDSA as the signature algorithm
 - This prevents unauthorized code from running
 - They had an **option** to run alternate operating systems (Linux) that they then removed
- Of course this was catnip to reverse engineers
 - Best way to get people interested: *remove* Linux from a device...
- It turns out one of the key authentication keys used to sign the firmware...
 - Ended up reusing the same k for multiple signatures!
And **NOT** Theoretical: Android RNG Bug + Bitcoin

- OS Vulnerability in 2013
 - Android "SecureRandom" wasn't actually secure!
 - Not only was it low entropy, it would occasionally return the *same value multiple times*
 - Multiple Bitcoin wallet apps on Android were affected
 - "Pay B Bitcoin to Bob" is signed by Alice's public key using ECDSA
 - Message is broadcast publicly for all to see
 - So you'd have cases where "Pay B to Bob" and "Pay C to Carol" were signed with the same k
 - So of course someone scanned for **all** such Bitcoin transactions
So What To Use?

- Paranoids like me:
 - Good libraries and use the parameters from NSA's CNSA suite
 - Open algorithms approved for Top Secret communication
 - Better yet, libraries that implement full protocols that use these under the hood!

- Symmetric cipher: AES: 256b
 - CFB mode, thankyouverymuch. Counter mode and modes which include counter mode can DIAF...

- Hash function: SHA-384
 - Use HMAC for MAC

- RSA: 3072b

- Diffie/Hellman: 3072b

- ECDH/ECDSA: P-384
 - But really, this is extra paranoid, 2048b RSA/DH, 256b EC, 128b AES, SHA-256 excellent in practice