
Computer Science 161 Fall 2018 Weaver

Nuke 
& 

Malcode

 1

Computer Science 161 Fall 2018 Weaver

Exam Problem: 
TLS Fuckups...
• First four were a particularly hard and subtle problem...

• Designed to test that you understood the TLS handshake

• I did warn people in lecture that drawing the handshakes
for TLS would be a good thing for your cheat sheet...

• Basic framework: Either the client or the server has a bad
pRNG

• With a public disclosure of pRNG state, the attacker can predict all other
values from that pRNG

• A very very common problem: both fuckups and sabotage

 2

Computer Science 161 Fall 2018 Weaver

Reminder: The common part

• Browser (client) connects via TCP to
Amazon’s HTTPS server

• Client picks 256-bit random number RB,
sends over list of crypto protocols it supports

• Server picks 256-bit random number RS,
selects protocols to use for this session

• Server sends over its certificate

• (all of this is in the clear)

• Client now validates cert

• The actual keys are F(RB, RS, PS)

!3

SYN

SYN ACK

ACK

Browser Amazon
Server

Hello. My rnd # = RB. I support

(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

My rnd # = RS. Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

Computer Science 161 Fall 2018 Weaver

RSA...

• For RSA, browser constructs
“Premaster Secret” PS

• Browser sends PS encrypted using
Amazon’s public RSA key KAmazon

• Under the "fuckup" scenarios...

• Attacker can take Rb and get PS if the

browser uses the bad pRNG

• Attacker can not get PS if the server uses

the bad pRNG

!4

Browser

Here’s my cert

~2-3 K
B of d

ata

{PS}KAmazon

PS

PS

Amazon
Server

Computer Science 161 Fall 2018 Weaver

Diffie-Hellman

• For DHE, PS is gab mod p

• And the signature is to prevent the active MitM attack on

DH and to validate the server

• So the attacker needs to know a or b

• For both, the associated Rs or Rb is in the clear

• So for both, the attacker can determine the necessary

secret value

• This made the NSA pRNG sabotage with
Dual_EC particularly interesting...

• If you used the "less secure" (no forward secret) RSA

mode, server corruption didn't matter

• If you used the forward secret mode, it did!

!5

Browser

Here’s my cert

~2-3 K
B of d

ata

gb mod p
PS

PS

{M1, MAC(M1,IB)}CB

MAC(dialog,IS)

MAC(dialog,IB)

{g, p, ga mod p} K
-1Amazon

…

Amazon
Server

Computer Science 161 Fall 2018 Weaver

And the "WPA-Enterprise Cert Problem"

• Again, a subtle problem to get if you understand certificates

• For iPhone: You have "trust on first use"

• So first time you can be MitM'ed, but if the first time is good, cool!

• For Android instructions: You have "Uh, just don't check"

• So you can always be MitM'ed! !

• In the changes that Outis did...

• His Linux laptop now trusts all CAs.

• His Android phone does not...

• So more people can potentially act as a MitM on his laptop

 6

Computer Science 161 Fall 2018 Weaver

The Problem: 
When To Use Nukes...
• Nuclear weapon systems can fail in two ways:

• Launch the nukes when you shouldn't...

• Fail to launch the nukes when you should...

• "Do you want your system to fail safe or fail deadly?"

• The latter is (badly) addressed by how our nuclear decision making
happens

• "Launch on warning": If we think we are under attack, the President has a couple minutes to

decide to order a nuclear strike before the attacker hits our ICBMs!

• This is often regarded as insanely stupid: We have both nuclear bombers with long-range cruise missiles

and nuclear armed submarines, both of which will be able to launch enough retaliatory hellfire

• Far better is the "French model" (cite @armscontrolwonk): 

"We have subs. You nuke us or attack our strategic weapons and we nuke you":

• This removes the time pressure which can cause errors

 7

Computer Science 161 Fall 2018 Weaver

"Launch on Warning" 
and North Korea...
• Let us assume that North Korea's leadership are rational actors

• They act in what they perceive as their self interest: survival!

• North Korean leadership will eventually lose a war with South Korea and the US

• So they may be provocative, but they want to make sure the US and South Korea won't start a war

• Nukes are a critical deterrent for them

• Especially since Donald Trump doesn't seem to care that a war would kill  

hundreds of thousands in South Korea

• IRBMs and ICBMs are as important as the nukes themselves!

• Need to be able to hit the US bases in Okinawa and Guam as military targets

• And Mar-a-lago and Washington DC to dissuade Trump personally: 

The Hwasong-15 ICBM can just barely range South Florida.

• "Empathy for the devil"

• Computer security is adversarial, think about your adversary's needs, wants,  

and desires
 8

Computer Science 161 Fall 2018 Weaver

The Interesting Problem: 
Limiting Use
• Who might use a nuke without authorization?

• Our "allies" where we station our nukes

• Original motivation: Nukes stored in Turkey and Greece

• Someone who can capture a nuke

• This is what sold the military on the need for the problem: 

We had nukes in Germany which would be overrun in case of a war with the USSR

• Our own military

• General Jack D Ripper scenario

• The mandated solution:

• Permissive Access Link (PAL)

 9

Computer Science 161 Fall 2018 Weaver

Nuke Safety Features

• One-point safety – no nuclear yield from detonation of one explosive charge.

• Strong link/weak link –

• strong link provides electrical isolation;

• weak link fails early under stress (heat, etc.)

• Environmental sensors – detect flight trajectory.

• Unique signal generator – digital signal used for coupling  

between stages.

• Insulation of the detonators from electrical energy.

• “Human intent” input.

• Tamper-resistant skin

• Use Control Systems

• Not always the case: In 1961 in South Carolina a B52 broke up

• One of the two 4MT bombs almost detonated on impact, since it thought it was being dropped!

 10

Computer Science 161 Fall 2018 Weaver

Bomb Safety Systems

• We have a "trusted base"

• Isolated inside a tamper-detecting 

membrane

• Breach the membrane -> disable 

the bomb

• We have human input

• Used to generate a signal saying 

"its OK to go boom"

• The user interface to the PAL can follow the same path/concepts: 

In fact, the name alone suggests how: You block a link unless you have permission!

• We have critical paths that we can block

• Complete mediation of the signal to go boom!

 11

Computer Science 161 Fall 2018 Weaver

Unique Signal Generator

• Part of the strong link

• Prevent any detonation without clear, unambiguous showing of “human intent”

• A safety system, not a security system

• Looks for a 24-bit signal that is extremely unlikely to happen during

any conceivable accident. (Format of input bits not safety-critical)

• Accidents can generate random or non-random data streams

• Desired signal pattern is unclassified!

• Unique signal discriminator locks up on a single erroneous bit

• At least partially mechanical

 12

Computer Science 161 Fall 2018 Weaver

PALs

• Originally electromechanical. (Some weapons used combination locks!)

• Newest model is microprocessor-based. There may still be a mechanical

component.

• Recent PAL codes are 6 or 12 digits.

• The weapon will permanently disable itself if too many wrong codes are
entered.

• PALs respond to a variety of codes – several different arming codes for
different groups of weapons, disarm, test, rekey, etc.

• It was possible, though difficult, to bypass early PALs.

• Some even used false markings to deceive folks who didn’t have the manual.

• It does not appear to be possible to bypass the newest “CAT F” PAL.
 13

Computer Science 161 Fall 2018 Weaver

How are PALs built?

• We don't know, but some informed speculation from
Steve...

• It is most likely based around the same basic mechanism
as the unique signal generator

• Gives a single point of control already in the system

• Reports about it indicate that it was successfully evaluated in isolation

• Take advantage of the existing trusted base of the tamper-resistant barrier

around the warhead to protect the device

 14

Computer Science 161 Fall 2018 Weaver

Deployment History

• Despite Kennedy’s order, PALs were not deployed that quickly.

• In 1974, there were still some unprotected nukes in Greece or Turkey

• PALs and use control systems were deployed on US-based
strategic missiles by then

• But the launch code was set to 00000000

• Rational: the Air Force was more worried about failure to launch!

• A use control system was added to submarine-based missiles
by 1997

• In 1981, half of the PALs were still mechanical combination
locks

 15

Computer Science 161 Fall 2018 Weaver

Steve Bellovin's Lessons Learned

• Understand what problem you’re solving

• Understand exactly what problem you’re solving

• If your abstraction is right:  

you can solve the key piece of the overall puzzle

• For access control, find the One True Mandatory Path —

and block it.

• And if there is more than one, you're doing it wrong!

• What is the real TCB of our systems?
 16

Computer Science 161 Fall 2018 Weaver

Malware: 
Catch-All Term for "Malicious Code"
• Attacker code running on victim computer(s)

 17

Computer Science 161 Fall 2018 Weaver

What Can Malware Do?

• Pretty much anything

• Payload generally decoupled from how manages to run

• Only subject to permissions under which it runs

• Examples:

• Brag or exhort or extort (pop up a message/display)

• Trash files (just to be nasty)

• Damage hardware (!)

• Launch external activity (spam, click fraud, DoS; banking)

• Steal information (exfiltrate)

• Keylogging; screen / audio / camera capture

• Encrypt files (ransomware)

• Possibly delayed until condition occurs

• “time bomb” / “logic bomb”

 18

Computer Science 161 Fall 2018 Weaver

Malware That Automatically Propagates

• Virus = code that propagates (replicates) across systems by arranging
to have itself eventually executed, creating a new additional instance

• Generally infects by altering stored code

• Worm = code that self-propagates/replicates across systems by
arranging to have itself immediately executed (creating new addl.
instance)

• Generally infects by altering running code

• No user intervention required

• (Note: line between these isn’t always so crisp; plus some malware
incorporates both approaches)

• NO EXPERIMENTATION WITH SELF REPLICATING CODE!
 19

Computer Science 161 Fall 2018 Weaver

The Problem of Viruses

• Opportunistic = code will eventually execute

• Generally due to user action

• Running an app, booting their system, opening an attachment

• Separate notions: how it propagates vs.  
what else it does when executed (payload)

• General infection strategy: 
find some code lying around, 
alter it to include the virus

• Have been around for decades …

• … resulting arms race has heavily 

influenced evolution of modern malware
 20

Computer Science 161 Fall 2018 Weaver

Propagation

• When virus runs, it looks for an opportunity to infect additional systems

• One approach: look for USB-attached thumb drive, alter any

executables it holds to include the virus

• Strategy: when drive later attached to another system & altered executable runs, it locates

and infects executables on new system’s hard drive

• Or: when user sends email w/ attachment, virus alters attachment to
add a copy of itself

• Works for attachment types that include programmability

• E.g., Word documents (macros)

• Virus can also send out such email proactively, using user’s address book + enticing subject

(“I Love You”)

 21

Computer Science 161 Fall 2018 Weaver

 22

Original Program Instructions
Entry point

Virus Original Program Instructions
Entry point

1. Entry point

Original Program Instructions

Virus

2.	JMP

3.	JMP

Original program
instructions can be:

• Application the
user runs

• Run-time library /
routines resident
in memory

• Disk blocks used
to boot OS

• Autorun file on
USB device

• …

Other variants are
possible; whatever
manages to get the
virus code executed

Computer Science 161 Fall 2018 Weaver

Detecting Viruses

• Signature-based detection

• Look for bytes corresponding to injected virus code

• High utility due to replicating nature

• If you capture a virus V on one system, by its nature the virus will be trying to infect many other systems

• Can protect those other systems by installing recognizer for V

• Drove development of multi-billion $$ AV industry 
(AV = “antivirus”)

• So many endemic viruses that detecting well-known ones becomes a “checklist item” for security

audits

• Using signature-based detection also has de facto utility for (glib) marketing

• Companies compete on number of signatures …

• … rather than their quality (harder for customer to assess)

 23

Computer Science 161 Fall 2018 Weaver

 24

Computer Science 161 Fall 2018 Weaver

Virus Writer / AV Arms Race

• If you are a virus writer and your beautiful new creations don’t
get very far because each time you write one, the AV
companies quickly push out a signature for it ….

• …. What are you going to do?

• Need to keep changing your viruses …

• … or at least changing their appearance!

• How can you mechanize the creation of new instances of
your viruses …

• … so that whenever your virus propagates, what it injects as a copy of itself

looks different?
 25

Computer Science 161 Fall 2018 Weaver

Polymorphic Code

• We’ve already seen technology for creating a representation of data
apparently completely unrelated to the original: encryption!

• Idea: every time your virus propagates, it inserts a newly
encrypted copy of itself

• Clearly, encryption needs to vary

• Either by using a different key each time

• Or by including some random initial padding (like an IV)

• Note: weak (but simple/fast) crypto algorithm works fine

• No need for truly strong encryption, just obfuscation

• When injected code runs, it decrypts itself to obtain the original
functionality

 26

Computer Science 161 Fall 2018 Weaver

 27

Virus Original Program Instructions

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Original Program Instructions

}

Jmp

Instead of this …

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob …

⇓
… and jumps to the
decrypted code once
stored in memory

Computer Science 161 Fall 2018 Weaver

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Jmp

⇓

Once running, virus
uses an encryptor with
a new key to propagate

E
ncryptor

}

D
ecryptor

Different Encrypted Glob of Bits

K
ey2

⇓

Polymorphic Propagation

 28

New virus instance
bears little resemblance
to original

Computer Science 161 Fall 2018 Weaver

Arms Race: Polymorphic Code

• Given polymorphism, how might we then detect viruses?

• Idea #1: use narrow sig. that targets decryptor

• Issues?

• Less code to match against ⇒ more false positives

• Virus writer spreads decryptor across existing code

• Idea #2: execute (or statically analyze) suspect code to see if it decrypts!

• Issues?

• Legitimate “packers” perform similar operations (decompression)

• How long do you let the new code execute?

• If decryptor only acts after lengthy legit execution, difficult to spot

• Virus-writer countermeasures?

 29

Computer Science 161 Fall 2018 Weaver

Metamorphic Code

• Idea: every time the virus propagates, generate semantically different
version of it!

• Different semantics only at immediate level of execution; higher-level semantics remain same

• How could you do this?

• Include with the virus a code rewriter:

• Inspects its own code, generates random variant, e.g.:

• Renumber registers

• Change order of conditional code

• Reorder operations not dependent on one another

• Replace one low-level algorithm with another

• Remove some do-nothing padding and replace with different do-nothing padding (“chaff”)

• Can be very complex, legit code … if it’s never called!

 30

Computer Science 161 Fall 2018 Weaver

When ready to propagate,
virus invokes a randomized
rewriter to construct new but
semantically equivalent code
(including the rewriter)

}

ê

Metamorphic Propagation

 31

Main Virus Code

R
ew

riter
}

ê

(Main Virus Code)'
R

ew
riter'

(Main Virus Code)''

R
ew

riter''

Computer Science 161 Fall 2018 Weaver

Detecting Metamorphic Viruses?

• Need to analyze execution behavior

• Shift from syntax (appearance of instructions) to  

semantics (effect of instructions)

• Two stages: (1) AV company analyzes new virus to find behavioral signature; 
(2) AV software on end systems analyze suspect code to test for match to signature

• What countermeasures will the virus writer take?

• Delay analysis by taking a long time to manifest behavior

• Long time = await particular condition, or even simply clock time

• Detect that execution occurs in an analyzed environment and if so behave differently

• E.g., test whether running inside a debugger, or in a Virtual Machine

• Counter-countermeasure?

• AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle
 32

Computer Science 161 Fall 2018 Weaver

Malcode Wars and the Halting Problem...

• Cyberwars are not won by solving the halting problem... 
Cyberwars are won by making some other poor sod solve the halting
problem!!!

• In the limit, it is undecidable to know "is this code bad?"

• Modern focus is instead "is this code new?"

• Use a secure cryptographic hash (so sha-256 not md5)

• Check hash with central repository: If not seen before,  

treat binary as inherently more suspicious

• Creates a bind for attackers:

• Don't make your code *morphic:  

Known bad signature detectors find it

• Make your code *morphic:  

It always appears as new and therefore inherently suspicious
 33

Computer Science 161 Fall 2018 Weaver

Creating binds is very powerful...

• You have a detector D for some bad behavior...

• So bad-guys come up with a way of avoiding detector D

• So come up with a detection strategy for avoiding
detector D

• So to avoid this detector, the attacker must not try to avoid D

• When you can do it, it is very powerful!

 34

Computer Science 161 Fall 2018 Weaver

How Much Malware Is Out There?

• A final consideration re polymorphism and metamorphism:

• Presence can lead to mis-counting a single virus outbreak as instead

reflecting 1,000s of seemingly different viruses

• Thus take care in interpreting vendor statistics on malcode
varieties

• (Also note: public perception that huge malware populations exist is in the
vendors’ own interest)

 35

Computer Science 161 Fall 2018 Weaver

 36

Computer Science 161 Fall 2018 Weaver

Infection Cleanup

• Once malware detected on a system, how do we get rid of it?

• May require restoring/repairing many files

• This is part of what AV companies sell: per-specimen disinfection procedures

• What about if malware executed with adminstrator privileges?

• "Game over man, Game Over!"

• “Dust off and nuke the entire site from orbit. It’s the only way to be sure”

• i.e., rebuild system from original media + data backups

• Malware may include a rootkit: kernel patches to hide its
presence (its existence on disk, processes)

 37

- Aliens

Computer Science 161 Fall 2018 Weaver

Infection Cleanup

• Once malware detected on a system, how do we get rid of it?

• May require restoring/repairing many files

• This is part of what AV companies sell: per-specimen disinfection procedures

• What about if malware executed with adminstrator privileges?

• "Game over man, Game Over!"

• “Dust off and nuke the entire site from orbit. It’s the only way to be sure”

• i.e., rebuild system from original media + data backups

• Malware may include a rootkit: kernel patches to hide its
presence (its existence on disk, processes)

 38

- Aliens

Computer Science 161 Fall 2018 Weaver

Infection Cleanup, con’t

• If we have complete source code for system, we could
rebuild from that instead, couldn’t we?

• No!

• Suppose forensic analysis shows that virus introduced a

backdoor in /bin/login executable

• (Note: this threat isn’t specific to viruses; applies to any malware)

• Cleanup procedure: rebuild /bin/login from source …

 39

Computer Science 161 Fall 2018 Weaver

 40

/bin/login 
source code

Compiler

/bin/login 
executable

Regular compilation
process of building login
binary from source code

/bin/login 
source code

Compiler

/bin/login 
executable

Infected compiler
recognizes when it’s
compiling /bin/login
source and inserts extra
back door when seen

Computer Science 161 Fall 2018 Weaver

 41

No problem: first step,
rebuild the compiler so
it’s uninfected

Correct compiler 
source code

 Infected Compiler

Correct compiler 
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

No amount of careful source-code
scrutiny can prevent this problem.
And if the hardware has a back door …

 Infected Compiler

 Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Correct compiler 
source code

X

Computer Science 161 Fall 2018 Weaver

More On "Rootkits"

• If you control the operating system...

• You can hide extremely well

• EG, your malcode is on disk...

• So it will persist across reboots

• But if you try to read the disk...

• The operating system just says "Uhh, this doesn't exist!"

 42

Computer Science 161 Fall 2018 Weaver

Even More Places To 
Hide!
• In the BIOS/EFI Firmware!

• So you corrupt the BIOS which corrupts the OS...

• Really hard to find: 

Defense, only run cryptographically signed BIOS code as part of the Trusted
Base

• In the disk controller firmware!

• So the master boot record, when read on boot up corrupts the OS...

• But when you try to read the MBR later... It is just "normal"

• Again, defense is signed code: The Firmware will only load a signed operating

system

• Make sure the disk itself is not trusted!

 43

Computer Science 161 Fall 2018 Weaver

Robust Rootkit Detection: 
Detect the act of hiding...
• Do an "in-system" scan of the disk...

• Record it to a USB drive

• Reboot the system with trusted media

• So a known good operating system

• Do the same scan!

• If the scans are different, you found the rootkit!

• For windows, you can also do a "high/low scan" on the Registry:

• Forces the bad guy to understand the registry as well as Mark Russinovich (the guy behind Sysinternals

who's company Microsoft bought because he understood the Registry better than Microsoft's own
employees!)

• Forces a bind on the attacker:

• Hide and persist? You can be detected

• Hide but don't persist? You can't survive reboots!

 44

Computer Science 161 Fall 2018 Weaver

Which Means Proper Malcode Cleanup...

 45

Computer Science 161 Fall 2018 Weaver

Forensics

• Vital complement to detecting attacks: figuring out what
happened in wake of successful attack

• Doing so requires access to rich/extensive logs

• Plus tools for analyzing/understanding them

• It also entails looking for patterns and understanding the
implications of structure seen in activity

• An iterative process (“peeling the onion”)

• Consider these actual emails from operational security …

 46

Emails omitted from on-line slides

