Nick's Personal Self-Defense Decisions...
Putting CS161 in Context: Nick's Self Defense Strategies...

- **How** and **why** do I protect myself online and in person...
 - **How** I decide what to prepare for (and what not to prepare for)
 - **Why** I've drunk the Apple Kool-Aid™
 - **Why** I use my credit card everywhere but not a debit card
- And my future nightmares:
 - What do I see as the security problems of tomorrow...
My Personal Threats: The Generic Opportunist

- There are a lot of crooks out there
 - And they are rather organized...
- But at the same time, these criminals are generally economically rational
 - So this is a bear race: I don't need perfect security, I just need good enough security
- I use this to determine security/convenience tradeoffs all the time
 - So no password reuse (use a password manager instead)
 - Full disk encryption & passwords on devices: Mitigates the damage from theft
 - Find my iPhone turned on:
 Increases probability of theft recovery
My Personal Threats: The *Lazy* Nation State

- OK, I'm a high *enough* profile to have to worry about the "Advanced Persistent Threats"...
 - Trying for a reasonably high profile on computer policy issues
 - A fair amount of stuff studying the NSA's toys and other nation-state tools
 - But only at the Annoying Pestilent Teenager level: I'm worth some effort but not an extraordinary amount
- So its only *slightly* more advanced than the everyday attackers...

With one *huge* exception: Crossing borders

- Every nation maintains the right to conduct searches of all electronic contents at a border checkpoint
My Border Crossing Policy: Low Risk Borders

- Not very sensitive borders: Canada, Europe, US, etc...
 - I use full disk encryption with strong passwords on all devices
 - Primary use is to prevent theft from also losing data
 - I have a very robust backup strategy
 - Time machine, archived backups in a safe deposit box, working sets under version control backed up to remote systems...

- So, as the plane lands:
 - Power off my devices
 - Device encryption is only robust when you aren't logged in
 - Go through the border

- If my devices get siezed...
 - "Keep it, we'll let the lawyers sort it out"
High Risk Borders

• Middle East or, if, god forbid, I visit China or Russia...
 • Need something that doesn't just resist compromise but can also tolerate compromise
• A "burner" iPhone SE with a Bluetooth keyboard
 • The cheapest secure device available
 • Set it up with independent computer accounts for both Google and Apple
 • Temporarily forward my main email to a temporary gmail account
 • All workflow accessible through Google apps on that device
 • Bluetooth keyboard does leak keystrokes, so don't use it for passwords but its safe for everything else
• Not only is this device very hard to compromise...
 • But there is very low value in successfully compromising it: The attacker would only gain access to dummy accounts that have no additional privileges
• And bonus, I'm not stuck dragging a computer to the ski slopes in Dubai...
 • Since the other unique threat in those environments is the "Evil maid" attack
My Personal Threats: The Russians... Perhaps

Click Trajectories: End-to-End Analysis of the Spam Value Chain

Kirill Levchenko* Andreas Pitsillidis* Neha Chachra* Brandon Enright* Márk Félegyházi† Chris Grier†
Tristan Halvorson* Chris Kanich* Christian Kreibich◊ He Liu* Damon McCoy*
Nicholas Weaver◊ Vern Paxson◊ Geoffrey M. Voelker* Stefan Savage*

• This is the paper that killed the Viagra® Spam business
• A $100M a year set of organized criminal enterprises in Russia...
 And they put the organized in organized crime...
• I've adopted a detection and response strategy:
 • The Russians have higher priority targets: The first authors, the last authors, and Brian Krebs
 • If anything suspicious happens to Brian, Kirill, or Stefan, then I will start sleeping with a rifle under my bed
Excluded Threats: Sorta…

- Intimate Partner Threats…
 - But I’ve had at least one colleague caught up with that.
- Aggressive Nation States…
 - $50M will buy the latest version of Pegasus malcode
- The US government…
 - The surveillance powers of the US government are awesome and terrifying to behold…
The Apple Kool-Aid...

- The iPhone is perhaps the most secure commodity device available...
 - Not only does it receive patches but since the 5S it gained a dedicated cryptographic coprocessor
- The **Secure Enclave Processor** is the trusted base for the phone
 - Even the main operating system isn't fully trusted by the phone!
- A dedicated ARM v7 coprocessor
 - Small amount of memory, a true RNG, cryptographic engine, etc...
 - Important: A collection of *randomly* set fuses
 - Should not be able to extract these bits without taking the CPU apart or compromising the Secure Enclave's software
 - But bulk of the memory is shared with the main CPU
- **GOOD** documentation:
 - The iOS security guide is something you should at least skim....
 I find that the design decisions behind how iOS does things make **great** final exam questions.
The Roll of the SEP...

Things *too important* to allow the OS to handle

- Key management for the encrypted data store
 - The CPU has to ask for access to data!
- Managing the user's passphrase and related information
- User authentication:
 - *Encrypted* channel to the fingerprint reader/face recognition camera
- Storing credit cards
 - ApplePay is cheap for merchants *because it is secure*:
 Designed to have very low probability of fraud!
AES-256-XEX mode

- **An confidentiality-only mode** developed by Phil Rogaway...
 - Designed for encrypting data within a filesystem block i
 - Known plaintext, when encrypted, can't be replaced to produce known output, only "random" output
 - Within a block: Same cypher text implies different plaintext
 - Between blocks: Same cypher text implies nothing!
 - α is a galios multiplication and is very quick:
 In practice this enables parallel encryption/decryption
 - Used by the SEP to encrypt its own memory...
 - Since it has to share main memory with the main processor
 - Opens a limited attack surface from the main processor:
 - Main processor can replace 128b blocks with random corruption
User Passwords...

- Data is encrypted with the user's password
 - When you power on the phone, most data is completely encrypted
- The master key is PBKDF2(password || on-chip-secret)
 - So you need both to generate the master key
 - Some other data has the key as F(on-chip-secret) for stuff that is always available from boot
- The master keys encrypt a block in the flash that holds all the other keys
 - So if the system can erase this block effectively it can erase the phone by erasing just one block of information
- Apple implemented effaceable storage:
 - After x failures, OS command, whatever...
 Overwrite that master block in the flash securely
 - Destroy the keys == erase everything!
Background: FBI v Apple

- A "terrorist" went on a rampage with a rifle in San Bernardino...
 - Killed several people before being killed in a battle with police
- He left behind a work-owned, passcode-locked iPhone 5 in his other car...
- The FBI **knew** there was no valuable information on this phone
 - But never one to refuse a good test case, they tried to compel Apple in court to force Apple to unlock the phone...
- Apple has serious security on the phone
 - Effectively everything is encrypted with PBKDF2(PW||on-chip-secret):
 - \(>128\)b of randomly set microscopic fuses
 - Requires that **any** brute force attack either be done on the phone or take apart the CPU
 - Multiple timeouts:
 - 5 incorrect passwords -> starts to slow down
 - 10 incorrect passwords -> optional (opt-in) erase-the-phone
What the FBI wanted...

- Apple provides a *modified* version of the operating system which...
 - Removes the timeout on all password attempts
 - Enables password attempts through the USB connection
- Apple *cryptographically signs the rogue OS version*
 - A horrific precedent:
 This is *requiring* that Apple both create a malicious version of the OS and sign it
 - If the FBI could compel Apple to do this, the NSA could too...
 It would make it *impossible* to trust software updates!
Updating the SEP To Prevent This Possibility...

- The SEP will only accept updates signed by Apple
 - But an updated SEP could exfiltrate the secret to enable an offline attack
- The FBI previously asked for this capability against a non-SEP equipped phone
 - "Hey Apple, cryptographically sign a corrupted version of the OS so that we can brute-force a password"
- How to prevent the FBI from asking again?
- Now, an OS update (either to the base OS and/or the SEP) requires the user to be logged in and input the password
 - "To rekey the lock, you must first unlock the lock"
 - The FBI can only even attempt to ask before they have possession of the phone since once they have the phone they must also have the passcode
 - So when offered the chance to try again with a "Lone Wolf’s" iPhone in the Texas church shooting, they haven’t bothered
- At this point, Apple has now gone back and allows auto-updates for the base OS
 - (but probably not the SEP)
The Limits of the SEP...

The host O/S

- The SEP can keep the host OS from accessing things it shouldn't...
 - Credit cards stored for ApplePay, your fingerprint, etc...
- But it can't keep the host OS from things it is supposed to access
 - All the user data when the user is logged in...
- So do have to rely on the host OS as part of *my* TCB
 - Fortunately it is updated continuously when vulnerabilities are found
 - Apple has responded to the discovery of very targeted zero-days in <30 days
 - And Apple has both good sandboxing of user applications and a history of decent vetting
 - So the random apps are *not* in the Trusted Base.
The SEP and Apple Pay

- The SEP is what makes ApplePay possible
 - It handles the authentication to the user with the fingerprint reader/face reader
 - Verifies that it is the user not somebody random
 - It handles the emulation of the credit card
 - A "tokenized" Near Field Communication (NFC) wireless protocol
 - And a tokenized public key protocol for payments through the app
- **Very hard** to conduct a fraudulent transaction
 - Designed to enforce user consent at the SEP
- **Disadvantage:** The fingerprint reader is part of the trust domain
 - Which means you need special permission from Apple to replace the fingerprint reader when replacing a broken screen
I love ApplePay...

- It is a **faster** protocol than the chip-and-signature
 - NFC protocol is designed to do the same operation in less time because the protocol is newer
- It is a **more secure** protocol than NFC on the credit card
 - Since it actually enforces user-consent
- It is more **privacy sensitive** than standard credit card payments
 - Generates a unique token for each transaction:
 Merchant is not supposed to link your transactions
- Result is its low cost:
 - Very hard to commit fraud -> less cost to transact
- I use it on my watch all the time
- Useful product idea: Enable enrolling credit cards to enable "tap to open" door locks!
Transitive Trust in the Apple Ecosystem...

- The most trusted item is the iPhone SEP
 - Assumed to be rock-solid
 - Fingerprint reader/face reader allows it to be convenient
- The watch trusts the phone
 - The pairing process includes a cryptographic key exchange mediated by close proximity and the camera
 - So Unlock the phone -> Unlock the watch
- My computer trusts my watch
 - Distance-bounded cryptographic protocol
 - So my watch unlocks my computer
- Result? I don't have to keep retyping my password
 - Allows the use of strong passwords everywhere without driving myself crazy!
Credit Card Fraud

- Under US law we have very good protections against fraud
 - Theoretical $50 limit if we catch it quickly
 - $0 limit in practice
- So cost of credit card fraud for me is the cost of recovery from fraud
 - Because fraud *will happen*:
 - The mag stripe is all that is needed to duplicate a swipe-card
 - And you can still use swipe-only at gas pumps and other such locations
 - The numbers front and back is all that is needed for card-not-present fraud
 - And how many systems
- What are the recovery costs?
 - Being without the card for a couple of days...
 - Have a second back-up card
 - Having to change all my autopay items...
 - Grrrr....
But What About "Debit" Cards?

- Theoretically the fraud protection is the same...
- But two caveats...
 - It is easier to not pay your credit card company than to claw money back from your bank...
 - Until the situation is resolved:
 - Credit card? It is the credit card company's money that is missing
 - Debit card? It is your money that is missing
- Result is debit card fraud is more transient disruptions...
So Two Different Policies...

- **Credit card: Hakunna Matata!**
 - I use it without reservation, just with a spare in case something happens
 - Probably 2-3 compromise events have happened, and it's annoying but ah well
 - The most interesting was $1 to Tsunami relief in 2004... was a way for the attacker to test that the stolen card was valid

- **Debit card: Paranoia-city...**
 - It is an ATM-ONLY card (no Visa/Mastercard logo!)
 - It is used ONLY in ATMs belonging to my bank
 - Reduce the risk of "skimmers": rogue ATMs that record cards and keystrokes
And Now Q&A…

• This is “Ask Me Anything” time…
 • I will repeat questions for the webcast.