
CS 161
Fall 2024

Introduction to
Computer Security Exam Prep 6

Q1 Bob’s Birthday (11 points)
It’s Bob’s birthday! Alice wants to send an encrypted birthday message to Bob using ElGamal.

Recall the definition of ElGamal encryption:

• b is the private key, and B = gb mod p is the public key.

• Enc(B,M) = (C1, C2), where C1 = gr mod p and C2 = M ×Br mod p

• Dec(b, C1, C2) = C−b
1 × C2 mod p

Q1.1 (2 points) Mallory wants to tamper with Alice’s message to Bob. In response, Alice decides to
sign her message with an RSA digital signature. Bob receives the signed message and verifies the
signature successfully. Can he be sure the message is from Alice?

Yes, because RSA digital signatures are unforgeable.

Yes, because RSA encryption is IND-CPA secure.

No, because Mallory could have blocked Alice’s message and replaced it with a different
one.

No, because Mallory could find a different message with the same hash as Alice’s original
message.

Solution: RSA digital signatures, when paired with a secure hash function, are believed to
be unforgeable. See the textbook for a game-based definition of what exactly we mean by
unforgeable.

As we discussed in class, ElGamal is malleable, meaning that a man-in-the-middle can change a message
in a predictable manner, such as producing the ciphertext of the message 2×M given the ciphertext of
M .

This content is protected and may not be shared, uploaded, or distributed.

Page 1 of 9



Q1.2 (3 points) Consider the following modification to ElGamal: Encrypt as normal, but further encrypt
portions of the ciphertext with a block cipher E, which has a block size equal to the number of
bits in p. In this scheme, Alice and Bob share a symmetric keyKsym known to no one else.

Under thismodified scheme,C1 is computed asEKsym(g
r mod p) andC2 is computed asEKsym(M×

Br mod p). Is this scheme still malleable?

Yes, because block ciphers are not IND-CPA secure encryption schemes

Yes, because the adversary can still forge k × C2 to produce k ×M

No, because block ciphers are a pseudorandom permutation

No, because the adversary isn’t able to learn anything about the messageM

Solution: While block ciphers aren’t IND-CPA secure, they are secure when encrypting
“random-looking” values because of their properties as pseudorandom permutations. As long
as the values you encrypt are unique, the output of the block cipher will always be secure.
ElGamal’s C1 and C2 both appaer random.

Additionally, because block ciphers are a PRP, the scheme is no longer malleable, because
modifying the ciphertext in any way causes an unpredictable change to the result of decrypting
the block cipher with DKsym .

This content is protected and may not be shared, uploaded, or distributed.

Page 2 of 9 –



The remaining parts are independent of the previous part.

For Bob’s birthday, Mallory hacks into Bob’s computer, which stores Bob’s private key b. She isn’t able
to read b or overwrite b with an arbitrary value, but she can multiply the stored value of b by a random
value z known to Mallory.

Mallory wants to send a message to Bob that appears to decrypt as normal, but using the modified
key b · z. Give a new encryption formula for C1 and C2 that Mallory should use. Make sure you only
use values known to Mallory!

Clarification during exam: For subparts 3 and 4, assume that the value of B is unchanged.

Q1.3 (3 points) Give a formula to produce C1, encrypting M .

Solution: Mallory should send gr with some randomly chosen r, as usual.

Q1.4 (3 points) Give a formula to produce C2, encrypting M .

Solution: Mallory should send C2 = m×Brz mod p.

This content is protected and may not be shared, uploaded, or distributed.

Page 3 of 9 –



Q2 Cryptography: EvanBot Signature Scheme (12 points)
EvanBot decides to make a signature scheme!

To initialize the system, a Diffie-Hellman generator g and prime p are generated and shared to all parties.
The private key is some x mod p chosen randomly, and the public key is y = gx mod p.

To sign a messagem such that 2 ≤ m ≤ p− 2:

1. Choose a random integer k between 2 and p− 2.

2. Set r = gk mod p.

3. Set s = (H(m)− xr)k−1 mod (p− 1). If s = 0, restart from Step 1.

4. Output (r, s) as the signature.

Clarification after exam: k is chosen to be coprime to p− 1.

To verify, check that gH(m) ≡ mod p. We will fill in this blank in the next few subparts.

Q2.1 (3 points) Select the correct expression for H(m) in terms of x, r, k, s and p− 1.
HINT: Use Step 3 of the signature algorithm.

k(xr)−1 + s mod (p− 1)

ks− xr mod (p− 1)

k−1 + xr mod (p− 1)

ks+ xr mod (p− 1)

Solution: From step 3:

s ≡ (H(m)− xr)k−1 mod (p− 1)

sk ≡ H(m)− xr mod (p− 1)

sk + xr ≡ H(m) mod (p− 1)

H(m) ≡ ks+ xr mod (p− 1)

This content is protected and may not be shared, uploaded, or distributed.

Page 4 of 9 –



Q2.2 (4 points) Using the previous result, select the correct value for the blank in the verification step.
HINT: Replace the H(m) in gH(m) with your results from the previous subpart.

ysr2 mod p

yrrs mod p

ryrs mod p

rgyr mod p

Solution:

gks+xr mod p

≡ gks · gxr mod p

≡ (gk)s · (gx)r mod p

≡ rsyr ≡ yrrs mod p

Q2.3 (5 points) Show how to recover the private key x if a signature is generated such that s = 0 (i.e.
the check on Step 3 is ignored).

Solution: If s = 0, then 0 ≡ (H(m) − xr)k−1 mod (p − 1) per Step 3, which means
xr = H(m) mod (p− 1) and we can solve for x. Note that k is implicitly coprime to p− 1
by construction in the protocol.

This content is protected and may not be shared, uploaded, or distributed.

Page 5 of 9 –



Q3 Hash Functions: YAAS (Yet Another Authentication Scheme) (8 points)
EvanBot decides to design a new authentication scheme.

Define pwd to be a secure password that only EvanBot knows.

Also, define Hk to be the result of repeatedly applying H , a cryptographically secure hash function, k
times. Note: H0(x) = x.

Hk(x) = H(H(...H︸ ︷︷ ︸
k times

(x)))

To sign up:
1. EvanBot securely generates a 128-bit salt salt.
2. EvanBot sends H1000(pwd∥salt) to the server.
3. The server maps EvanBot’s username to a variable called
stored. The server sets stored to be the value received
in Step 2.

To log in for the n-th time (n starts at 1):
1. EvanBot sends H1000−n(pwd∥salt) to the server.
2. The server checks whether [ANSWER TO Q3.1].
3. If Step 2 succeeds, the server updates stored to [ANSWER

TO Q3.2].

H

H

H

pwd∥salt

H(pwd∥salt)

H2(pwd∥salt)

H1000(pwd∥salt)

This content is protected and may not be shared, uploaded, or distributed.

Page 6 of 9 –



Q3.1 (1 point) Let Step1 be the value received in Step 1 of the login process. Select the correct option
for the blank in Step 2.

H(Step1) = stored

H(stored) = Step1

H(stored∥salt) = Step1

H(Step1∥salt) = stored

Solution:

When EvanBot first signs up, stored is set to:

stored = H1000(pwd∥salt).

To log in for the first time, set n = 1, so 1000 − n = 999. EvanBot sends this value to the
server:

Step1 = H999(pwd∥salt)

From these two values, we can write:

H(H999(pwd∥salt)) = H1000(pwd∥salt)

H(Step1) = stored

At this point, stored gets set to H999(pwd∥salt).

On the next login, n = 2, so EvanBot sends this value to the server:

Step1 = H998(pwd∥salt)

From these two values, we can again write:

H(H998(pwd∥salt)) = H999(pwd∥salt)

This pattern continues for subsequent logins.

Q3.2 (1 point) Select the correct option for the blank in Step 3.

stored (no update needed)

H(stored∥salt)

Step1

H2(Step1)

Solution: Since the server always wants to store the next value in the hash chain, we need to
update stored to current client value.

Q3.3 (1 point) Does the server need to know salt in order to complete the login process?

Yes No

This content is protected and may not be shared, uploaded, or distributed.

Page 7 of 9 –



Q3.4 (1 point) Eventually, EvanBot logs in by sending H700(pwd∥salt). Given only pwd, salt, and
H700(pwd∥salt), how many calls to H does EvanBot need to make on the next login request?

0 1 699 700

Solution: For the next login request, EvanBot needs to compute H699(pwd∥salt).

(This is because on the next login, n increases by 1, so 1000− n decreases by 1. Specifically,
1000− n changes from 700 to 699.)

From the previous subpart, we can write:

H(H699(pwd∥salt)) = H700(pwd∥salt)

H is a secure cryptographic hash function, so given the output of the 700th hash (right-hand
side), we have no way to find an input to the 700th hash (H699, input to H on the left-hand
side).

The only way to compute H699(pwd∥salt) is to take pwd and salt and compute the 699
hashes from the start again.

Note: In practice, when computingH1000(pwd∥salt) during sign-up, EvanBot could cache
Hk(pwd∥salt) values for 1 ≤ k ≤ 1000 to avoid the recomputation later. But in this question,
we specifically say that EvanBot is only given those three values, and cannot rely on previously-
cached values.

Q3.5 (2 points) Eve is an on-path attacker.

Which of these sets of values, if seen by Eve, would allow Eve to learn the password? Each answer
choice is independent.

The first login attempt only

Any two login attempts in a row

The 999th login attempt only

None of the above

The 1000th login attempt only

All of the first 999 login attempts

All of the first 1000 login attempts

Solution: The key realization is that n = 1000 means EvanBot will send
H1000−1000(pwd∥salt) = H0(pwd∥salt) = pwd∥salt, from which Even can read
the password in plaintext. Other options are incorrect because the given hash function is
one-way, so an attacker cannot reverse the chain to get to the original value. The salt provides
brute-force resistance as well.

This content is protected and may not be shared, uploaded, or distributed.

Page 8 of 9 –



Q3.6 (2 points) Assume an attacker has compromised the server and can modify stored. Can the
attacker login as EvanBot?

Yes, without knowing n, pwd, or salt.

Yes, but only if they know n and salt.

No, even if they know n and salt.

Yes, but only if they know salt.

Yes, but only if they know n.

Solution: Since the server only checks thatH(Step1) = stored, the attacker can set stored
to H(x) for any value x that the attacker picks. Then the attacker would simply provide x to
login as EvanBot.

This content is protected and may not be shared, uploaded, or distributed.

Page 9 of 9 –


