
Homework 1 Solutions
CS161 Computer Security, Spring 2008

1. One-Time Pads

To communicate using a one-time pad, Alice and Bob would first need
to share a secret, random `-bit string r ∈ {0, 1}` (e.g., established
at an in person meeting). Then given their shared secret r, Alice
could later privately send an `-bit message m ∈ {0, 1}` by sending
Bob s = m ⊕ r. Bob could then in turn compute the message as
s⊕ r = m.

Having just learned about the one-time pad, Alice is excited about
the security it offers. However, she is concerned about the incon-
venience of establishing the shared key r with Bob. The following
protocol occurs to her.

When Alice is ready to send her message m, she randomly
selects r1 ∈ {0, 1}` and sends Bob s1 = m ⊕ r1. Bob then
randomly selects r2 ∈ {0, 1}` and sends Alice s2 = s1 ⊕ r2.
Next, Alice computes s3 = s2 ⊕ r1 and sends it to Bob.
Bob may then compute the message as s3 ⊕ r2 = m.

This idea seems similar to the one-time pad, but does not require
prior distribution of a shared key.

(a) (1 point) Is Alice’s protocol secure?

Answer: No.

(b) (2 points) If your answer is no, give an attack that breaks the
protocol. If your answer is yes, briefly specify your attack model
and state why you think the scheme might be secure under that
model (no formal proof is necessary).



Answer: A passive eavesdropper can directly compute m from
s1, s2, and s3 as shown below.

s1⊕ s2⊕ s3 = (m⊕ r1)⊕ (m⊕ r1⊕ r2)⊕ (m⊕ r1⊕ r2⊕ r1) = m

2. Block Ciphers

This question contains a small programming assignment that is de-
signed to ensure that your named UNIX accounts are properly set
up for CS161 while also illustrating some properties of block ciphers.

We’ve published a code skeleton with a number of BMP image files1

at http://inst.eecs.berkeley.edu/~cs161/sp08/hw01code.tar.gz.
Untar the file by running gtar zxf hw01code.tar.gz, and run make

to compile the program. Then type

./encrypt ecb plaintext-medium.bmp out.bmp

to to attempt to encrypt the image. The skeleton will pass a null
pointer into write() and fail with a “bad address” error until you
fill in the solution to the assignment.

We’ve tested the code on Linux and on cory.eecs.berekeley.edu.
We will use cory.eecs.berkeley.edu to grade the assignment, so
make sure that your code builds and runs on that machine.

The two bitmap files contain uncompressed versions of the same im-
age. One contains a monochrome (1 bit per pixel) version of the pic-
ture, and the other contains a 200% scaled RGB (24 bits per pixel)
version of the picture.

When you’ve completed the question, submit the files encrypt ecb.c,
plain.bmp, crypt.bmp, and encrypt cbc.c. Instructions for elec-
tronic submissions will be given on the website later this week.

(a) (3 points) Edit encrypt ecb.c so that it implements DES en-
cryption in electronic codebook (ECB) mode. Encrypt the two
included image files.

Answer: We expect to see a discernable pattern for both images.

1From http://xkcd.com/.



(b) (3 points) The skeleton intentionally avoids encrypting the BMP
file’s header so you can use standard software to inspect the en-
crypted data. Open the two encrypted files in your favorite im-
age editor. (We used the GIMP.) Was the encryption effective?
Explain the difference between the two encrypted files.

Answer: No, ECB mode encryption always encrypts the all-
white or all-black regions of the file as the same pattern. The
encrypted version of the smaller, monochrome file format can
store 64 pixels per ECB block, while only 64/24 pixels in the
larger image fit in an ECB block. Therefore, the larger file is
easily readable, while the smaller file’s text is scrambled.

(c) (3 points) Find a small (under 1MB uncompressed) image file
that would be more effectively encrypted using a block cipher
in ECB mode. Explain your choice of image. What sorts of
attacks is this scheme vulnerable to?

Convert the image to an uncompressed (not RLE encoded) 24-
bit BMP format and encrypt it. Name the files plain.bmp and
crypt.bmp and submit them.

Answer: We were looking for a photograph, or other image
that is unlikely to contain identical runs of pixels. In addition
to revealing repititions within a single image, this scheme is vul-
nerable to repititions across multiple images. Also, the image’s
blocks could be rearranged. CBC encryption is a much better
choice for this type of application.

(d) (3 points) Edit encrypt cbc.c so that it implements DES en-
cryption in cipher block chaining (CBC) mode. For this exer-
cise, a block of all 0’s may be used as the initialization vector.
Encrypt the two original image files and view the result.

How do the results differ when CBC is used instead of ECB?
Briefly state why that is the case.

Answer: CBC’s output should be indistinguishable from ran-
dom noise because it encrypts each block of the file based upon
the values of previous blocks.

(e) (extra credit, 4 points) Alice and Bob decided to use a modified
version of the homework submission for secure communications.
Alice tried to send her first encrypted email using one of the
encryption programs:



From: Alice
To: Bob
Date: Feb 5th, 2008 12:34:56PM

Bob,

I just generated a key. Did it work?

-A

However, Mallory intercepted it before it reached Bob’s com-
puter. A few seconds later (far too soon to brute-force a 56-bit
key), Mallory encrypted a completely different message using
Alice’s key, and sent it to Bob. Eve saw the forged message,
and now everyone’s upset. Mallory told you there’s a bug in
the implementations of main() that we provided to you. What
happened?

Answer: The skeleton uses the real time clock’s current value
rounded to the nearest second. Mallory knew the current value
of Alice’s clock (within a minute or so). With this information,
she knew Alice’s key was one of a few hundred values.

She guessed Alice’s key by feeding seeds close to the current
time into the skeleton’s key generation code. After a few hun-
dred tries, her computer guessed the correct seed, computed the
shared key and successfully decrypted the email. Then Mallory
used the key to forge a new message, and sent it to Bob.

3. Hash Functions and Collisions

Let k be a positive integer and let h : {0, 1}∗ → {0, 1}k. For this
problem we will assume h is an idealized, perfectly random hash
function. Specifically, assume h is selected uniformly at random from
all functions mapping {0, 1}∗ to {0, 1}k.

An attacker is interested finding collisions of h. Assume the attacker
treats the hash function as a black box; i.e., the only operation they
can perform is to compute the hash function on an input and observe
the result. Further assume they can perform at most one million hash
computations per second.

Hint: to solve the following two problems, you may need to use an



approximation, as direct computation of k may be difficult with a
fixed precision calculator. For this question it is acceptable to look
up and cite outside sources for any useful approximations. Briefly
show how you arrived at your answers.

(a) (6 points) Suppose the attacker is interested in finding a preim-
age x ∈ {0, 1}∗ which hashes to a particular value y ∈ {0, 1}k.
What is the minimum value of k that ensures the attacker will
have at most a 0.1% chance of succeeding in one year?

Answer: Note that the attacker can perform n = 1, 000, 000 ·60 ·
60·24·365.25 = 3.15576×1013 hash computations per year. The
attacker may try hashing sequential values or randomly chosen
values. Provided all the values the attacker hashes are distinct
(it would be pointless to repeat them), each trial will succeed
with probability 1

2k , independent of the others.

The probability that the attacker succeeds is then

1−
(

1− 1

2k

)n

,

and we require that this be at most 0.001. So we want to find
the minimum k that satisfies the following inequality.(

2k − 1

2k

)n

≥ 0.999

Computing k exactly. We computed this k explicitly using
bc to do arbitrary precision calculations. The above condition
holds iff

n log
2k − 1

2k
≥ log 0.999 .

If you run bc -l and doing the following, you can see that
k = 55 satisfies this inequality and k = 54 does not.

scale = 1000

n = 1000000 * 60 * 60 * 24 * 365.25

k = 55

n * l((2^k - 1)/2^k)

l(0.999)

k = 54

n * l((2^k - 1)/2^k)



Therefore the minimum k is exactly 55.

Another approach. Define random variable X to be the
number of times the attacker guesses the right answer. Then
X is a binomial random variable with parameters p = 1

2k and
n = 3.15576 × 1013. The probability of the attacker winning is
P (X ≥ 1).

Many students at this point chose k so that the expected value
of X at most 0.001. Since E(X) = np, this requires that

n

2k
≤ 0.001

The minimum k which satisfies that inequality is also 55. How-
ever, in general this is an incorrect approach to solving the prob-
lem, so we assigned half credit to students who simply stated
the reasoning above. Specifically, E(X) ≤ 0.001 is a distinct
condition from P (X ≥ 1) ≤ 0.001, and it is essentially only
a coincidence that k = 55 is the minimum value that satisfies
both.

To see why using expectation and probability interchangably is
problematic, consider two fair coin tosses. If X is the number
of heads observed, we have E(X) = 2 ·0.5 = 1, but P (X ≥ 1) =
0.75.

The reason why this approach ends up with the right answer on
this problem is that, when the probability of an individual trial
succeeding is exceptionally small, P (X ≥ 1) ≈ P (X = 1).

(b) (6 points) Suppose the attacker is interested in finding any col-
lision, that is, preimages x1, x2 ∈ {0, 1}∗ which both hash to
the same value in {0, 1}k. What is the minimum value of k
that ensures the attacker will have at most an 80% chance of
succeeding in one year?

Answer: It doesn’t seem to be possible to compute the answer
to this problem explicitly, even using an arbitrary precision cal-
culator. However, by using both upper and lower bounds the
minimum value for k can be narrowed down (at least) to either
88, 89, or 90.

That is, we can derive that k ≥ 88 is a necessary condition for
the attacker to fail with probability at least 0.8, and that k ≥ 90



is a sufficient condition for the attacker to fail with probability
at least 0.8.

To show that k ≥ 88 is necessary, we can use the inequality
1 + x ≤ ex for all x ∈ R that is suggested on Wikipedia. The
probability that all n hashes are distinct is(

1− 1

2k

)
·
(

1− 2

2k

)
·
(

1− 1

3k

)
· · · ·

(
1− n− 1

2k

)
≤ e−

1

2k · e−
2

2k · e−
1

3k · · · · e−
n−1

2k

= e−
1+2+3+···(n−1)

2k

= e−
(n−1)·(n−2)

2·2k .

The last expression is less than 0.2 for all k < 88, so k ≥ 88 is
a necessary condition for the original probability to be greater
than or equal to 0.2.

We can use the union bound to get a sufficient condition on k.
If y1, y2, . . . yn are the computed hash values (taken as random
variables), then the probability of a collision is

P (y1 = y2 ∧ y1 = y3 ∧ · · · y1 = yn ∧ y2 = y3 ∧ · · · yn−1 = yn)

≤ P (y1 = y2) + P (y1 = y3) + · · ·P (yn−1 = yn)

=
(n− 1) · (n− 2)

2
· 1

2k
.

The last expression is less than 0.8 iff k ≥ 90. So we know
that any k ≥ 90 will ensure that the attacker has at most a 0.8
chance of success.

Thus the minimum value of k which ensures the required prop-
erty is either 88, 89, or 90.

4. ElGamal and Chosen Ciphertext Attacks

Recall that to use the ElGamal public key encryption scheme, Alice
randomly selects a private key x ∈ Zp and computes her public key
as y = gx mod p, where g is a publicly known generator of Z∗p. To
encrypt a message m ∈ Z∗p for Alice, Bob randomly selects r ∈ Zp

and computes the ciphertext as c = (gr, m · yr).



(a) (3 points) Assume you are given an ElGamal public key y (but
not the private key). Assume ciphertexts ca = (ca1 , ca2) and
cb = (cb1 , cb2) are encryptions of some unknown messages ma

and mb.

Show how you can construct a ciphertext which is a valid El-
Gamal encryption of the message ma ·mb mod p.

Answer: The ciphertext may be constructed as follows, where
all computations are done modulo p.

Since ca and cb are encryptions of ma and mb, there exist ra, rb ∈
Zp such that ca = (gra , ma · yra) and cb = (grb , mb · yrb). Now
define rc = ra + rb and compute the following.

cc1 = ca1 · cb1 = gra+rb = grc

cc2 = ca2 · cb2 = ma ·mb · yra+rb = ma ·mb · yrc

So cc = (cc1 , cc2) is a valid encryption of ma ·mb.

(b) (4 points) Show how the above property of ElGamal leads to a
chosen ciphertext attack.

That is, assume you are given an ElGamal public key y and a
ciphertext c = (c1, c2) which is an encryption of some unknown
message m and that you are furthermore given access to an
oracle that will decrypt any ciphertext other than c. Based on
these things, compute m.

Answer: (Again we implicitly assume computation modulo p.)
Since c is encryption of m there exists an r ∈ Zp such that
c = (gr, m · yr).

Pick any m′ ∈ Z∗p, m′ 6= 1 and any r′ ∈ Zp, r
′ 6= 0 and compute

c′1 = c1 · gr′ = gr+r′

c′2 = c2 ·m′ · yr′ = m ·m′ · yr+r′

Define c′ = (c′1, c
′
2) and submit it to the oracle for decryption.

Note that c′ is a valid encryption of m · m′ and c′ 6= c, so the
oracle will give us m ·m′ as the result. Given m ·m′, we may
simple multiply by m′−1 to obtain m.

5. Factoring and More

Given an integer n, we say that m is a non-trivial factor of n if m|n,
m 6= n, and m 6= 1.



(a) (4 points) Assume n = pq, where p and q are prime. It can be
shown that for every x ∈ Z∗n, there exists a y ∈ Z∗n such that
y 6= x, y 6= −x, and x2 ≡ y2 mod n.

Assume you are given such an x and y in Z∗n, that is, x2 ≡ y2

mod n, x 6= y, and x 6= −y. Show that gcd(x − y, n) is a non-
trivial factor of n.

Answer: First of all, n has only four divisors: 1, p, q, and pq.
Since gcd(x− y, n) is a divisor of n and p and q are non-trivial
factors of n, we only need to show that gcd(x− y, n) 6= pq and
gcd(x− y, n) 6= 1. To see that, we reason as follows.

Suppose gcd(x − y, n) = pq. That would imply that x − y is a
multiple of n, i.e., that x − y ≡ 0 mod n. This cannot be the
case because x 6= y, so gcd(x− y, n) 6= pq.

Now suppose that gcd(x − y, n) = 1. This implies that neither
p nor q are divisors of (x − y), because either of those would
be a greater divisor than 1. Next note that (x − y) · (x + y) =
x2 − y2 ≡ 0 mod n. So n|(x− y) · (x + y); that is, the product
(x − y) · (x + y) contains both a factor of p and a factor of q.
If (x − y) has neither p nor q as a factor, then (x + y) must
have both p and q as factors, in which case n|(x + y). But that
cannot be the case, because we know that x 6= −y so x + y 6≡ 0
mod n. So gcd(x− y, n) 6= 1.

Thus we have that either gcd(x− y, n) = p or gcd(x− y, n) = q,
both of which are non-trivial factors of n.

(b) (1 point) Suppose we are considering a function h : Z∗n → Z∗n for
use as a hash function, where h(x) = x2 mod n. Does h satisfy
the compression property of a hash function? No justification
of your answer is required.

Answer: No. (The domain and range of h are the same.)

(c) (8 points) If we assume the difficulty of factoring, does h sat-
isfy the preimage resistance (a.k.a. one-way) property of hash
functions?

If your answer is no, give a probabilistic polynomial time algo-
rithm that, when given n and y, will output an x ∈ Z∗n such
that h(x) = y or abort if no such x exists.

If your answer is yes, show how such an algorithm could be used
to factor n in expected polynomial time.



Answer: Yes.

Assume we have a probabilistic polynomial time algorithm A
that, when given n and y, will output an x ∈ Z∗n such that
h(x) = y or abort if no such x exists. Then we may factor n in
expected polynomial time as follows.

Randomly select an x ∈ Z∗n and compute y = x2 mod n. Based
on the fact stated at the beginning of part (a), we know there
exists an x′ such that x′ 6= x, x′ 6= −x, and x′2 = y mod n. So
y has at least four square roots modulo n: x, −x, x′, and −x′.

Now run A on n and y. If A outputs x or −x, select a new x and
try again. This failure case can only happen with probability at
most 1

2
, because we selected x randomly and only gave y to A.

That is, from A’s perspective, this situation is indistinguishable
the situation of us originally picking x′ and then giving y = x′2

mod n to A.

So eventually, A will output one of the other square roots of y,
that is, an x′ such that x′ 6= x, x′ 6= −x, and x′2 mod n = y.
Specifically, the expected number of tries before A produces such
an x′ is 2.

Next compute m = gcd(x− x′, n). Based on the answer to part
(a), we know that m is a non-trivial factor of n. Specifically, m
is either p or q. Thus, m and n

m
are the prime factors of n.

(d) (3 points) If we assume the difficulty of factoring, does h satisfy
the second preimage resistance (a.k.a. weak collision resistance)
property of hash functions?

If your answer is no, give a probabilistic polynomial time algo-
rithm that, when given n and x, will output an x′ 6= x such that
h(x) = h(x′) or abort if no such x exists.

If your answer is yes, show how such an algorithm could be used
to factor n in expected polynomial time.

Answer: No. Let x′ = −x (i.e., n− x), then h(x) = h(x′).


