

Desired Properties

- · Word search is provably secure
 - Provable encryption properties
 - Server cannot search for arbitrary words
 - Does not leak information about other words
 - Does not reveal query word
- Efficiency
 - Low computation overhead
 - Low space and communication overhead
 - Low management overhead

Administrative Matters

- · Out of town starting Wed
- My office hour this week will be 5pm Tue
- John will give a guest lecture on Wed
- Rusty and Todd will do midterm review next Mon

Midterm Scope (I)

- Symmetric key encryption
 - Concept
 - One-time pad
 - Block cipher modes: how they work
- Public key encryption
 - Concept
 - How does RSA encryption/decryption work?
 How does ElGamal encryption/decryption work?
- Hash functions
 - Concept of one-way, pre-image resistance, 2nd pre-image resistance, collision resistance
- Message authentication
- Concept
 - E.g., what's the difference between the concept of encryption and message authentication?

Midterm Scope (II)

- Digital signatures
 - Concept
 - » E.g., what's the difference between digital signatures & MACs
 - One-time signature
 - ElGamal signature
 - -RSA signature
- Secret sharing
 - Concept
 - Threshold secret sharing schemes
- Zero-knowledge proofs
 - Concept
 - -ZKP of square roots and other graph-based examples

Midterm Scope (III)

- Authentication and key exchange protocols - Identify potential attacks

 - Do not need to know how exactly every message works
- Random number generator
 - How to generate random numbers in practice
 - Which sources are potentially good/bad sources of randomness

Side-Channel Attacks on Crypto

- A different attacker model
 - Side-channel attacks on Crypto
- Example: RSA in OpenSSL was vulnerable to timing attack:
 - Attacker can extract RSA private key by measuring web server response time
- Exploiting OpenSSL's timing vulnerability: – One process can extract keys from another.
 - Extract web server key remotely.
 - » Our attack works across Stanford campus.

Background: RSA Decryption

- RSA decryption: g^d mod N = m

 d is private decryption exponent, N is public modulus
- Chinese remaindering (CRT) uses factors directly. N=pq, and d1 and d2 are pre-computed from d:
 - 1. m1 = $g^{d1} \mod q$ 2. m2 = $g^{d2} \mod p$
 - 3. combine m1 and m2 to yield m (mod N)
- Goal: learn factors of N.
 Kocher's [K'96] attack fails when CRT is used.

20

RSA Decryption Time Variance

- Causes for decryption time variation:
 - Which multiplication algorithm is used.
 - » OpenSSL uses both basic mult. and Karatsuba mult. – Number of steps during a modular reduction
 - » modular reduction goal: given u, compute u mod q
 - » Occasional extra steps in OpenSSL's reduction alg.

• There are MANY:

- multiplications by input g
- modular reductions by factor q (and p)

Data Dependency Summary

- Decryption value g < q
 - Montgomery effect: longer decryption time
 - Multiplication effect: shorter decryption time
- Decryption value g > q
 - Montgomery effect: shorter decryption time
 - Multiplication effect: longer decryption time

Opposite effects! But one will always dominate

Timing Attack Details

- We know what is "large" and "small" from attack on previous bits.
- Decrypting just g does not work because of sliding windows
 - Decrypt a neighborhood of values near g
 - Will increase diff. between large and small values
 ⇒ larger 0-1 gap
- Only need to recover q/2 bits of q [C'97]
- Attack requires only 2 hours, about 1.4 million queries

28

How does this work with SSL?

How do we get the server to decrypt our g?

Attack requires accurate clock

- Attack measures 0.05% time difference between g and ${\rm g}_{\rm hi}$
 - Only 0.001 seconds on a P4
- We use the CPU cycle counter as fineresolution clock
 - "rdtsc" instruction on Intel
 - "%tick" register on UltraSparc

Attack Summary

- Attack successful, even on a WAN
- Attack requires only 350,000 1,400,000 decryption queries.
- Attack requires only 2 hours.

Defenses

37

Good: Use RSA blinding

BAD: Require statically all decryptions to take the same time

BAD: Use dynamic methods to make all decryptions take the same time

RSA Blinding

- Decrypt random number related to g:
 - 1. Compute x' = g*r^e mod N, r is random
 - 2. Decrypt x' = m'
 - 3. Calculate m = m'/r mod N
- Since r is random, the decryption time should be random
- 2-10% performance penalty

Conclusion

- Side-channel attacks – Different attacker model can break security
- Crypto libraries should defend against side-channel attacks

41

Conclusion

- We developed a timing attack based on multiplication and reduction timings
- Attack works against real OpenSSL-based servers on regular PC's.
- Lesson: Crypto libraries should always defend against timing attacks.

43

44

45

Conclusion

Ecash

Search/computation on encrypted data

Conjunctive Equality Test on Encrypted Data (Public Key Case)

• Example:

- Check whether an encrypted file contain every keyword in a set
- Subset, range query

Motivating example II: Multi-dimensional Range Query on Encrypted Data

Network audit logs

Encrypted

- An auditor may only be able to decrypt entries satisfying certain predicates
 - » E.g., p1< port p < p2, timestamp t > t1, source address a with prefix a1

Traditional Encryption

- Semantic security

 Given E_k{b}, difficult to guess b=0 or 1
- Search on encrypted data

 Semantic security not suitable, by definition
 Instead, encryption with search capability
 Predicate encryption

47

Predicate Encryption (Symmetric Key Case) • Let $\Phi = \{P_1, ..., P_n\}$ be a set of predicates over Σ . $P_i: \Sigma \rightarrow \{0,1\}$ [e.g: $P_j(S) = 1 \iff S \ge j$] • A Φ -query system consists of 4 algorithms: $-\underline{Setup}(\lambda):$ outputs SK $-\underline{Encrypt}(SK, S) \rightarrow Ciphertext C (S \in \Sigma)$ $-\underline{GenCapability}(SK, <P>) \rightarrow Capability T_p (P \in \Phi)$ $-\underline{Query}(T_p, C) \rightarrow Output P(S)$ -(Can allow message decryption on "hit" when P(S)=1)

- Learn nothing more than the given search capabilities
- Why do we need to construct the search capability? What if the encryption algorithm allows anyone to search for anything?

State-of-the-Art (I)

• Equality test:

- Symmetric-key Case » Goldreich, Ostrovsky, [JACM 1996]
- » Goldreich, Ostrovsky, [JACM 1996]
 » Song, Wagner, Perrig, [S&P 2000]
- Public-key case
- » Boneh, Crescenzo, Ostrovsky, Persiano, [Eurocrypt 2004]

$$\mathbf{f}_a(X) = \begin{cases} 1 & X = a \\ 0 & o.w. \end{cases}$$

Equality Test on Encrypted Data (Symmetric Key Case) • Example: - Check whether an encrypted file contain a keyword - App: keyword search on encrypted emails