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Motivating Example: Equality Search on 
Encrypted Data

• Searching encrypted e-mails on servers
• Searching encrypted files on servers
• Searching in encrypted databases

Search query

Download emails
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Desired Properties
• Word search is provably secure

– Provable encryption properties 
– Server cannot search for arbitrary words
– Does not leak information about other words
– Does not reveal query word

• Efficiency
– Low computation overhead
– Low space and communication overhead
– Low management overhead
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The Key Idea
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Setup and Notations
• Document:  sequence of fixed length words
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Setup and Notations
• Document:  sequence of fixed length 

words

• L0, L1, L2, …
–sequence of pseudorandom n-bit 

blocks
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Setup and Notations
• Document:  sequence of fixed length words

• L0, L1, L2, …
–sequence of pseudorandom n-bit blocks

• Pseudorandom Function FK
– maps n bits to (m-n) bits
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Basic Scheme (Encryption)
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Basic Scheme (Decryption)

m bits

n bits

⊕
m-n bits

m bitsWi

Li Ri
Ci

Li Ri

⊕

Wi

Li ← pseudorandom bits
Ri ← FK ( Li )



10

Basic Scheme (Searches)
Search for word W, give server W and K

Check: verification block OK?
Ri' = FK (Li' ) ? 

Yes ⇒ match, 
false positive rate = 1 / 2m-n
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Controlled Searches and Query Isolation
• To keep server from searching for arbitrary words &

To avoid leaking information about other words
• In encryption:

Replace
Ri ← FK ( Li )

with
Ri ← FKi ( Li ), where Ki = F'K ( Wi )

• To search for word W:
Reveal 

Kw = F'K ( W )
• Enhancements: 

– Check only for “word occurs at least once” in document
– Check only for “word occurs at least N times” in document
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Hidden Queries
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Final Scheme (Encryption)
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Summary for Keyword Search on Encrypted Data
(Symmetric Key Case)

• Provable security
– Provable secrecy
– Controlled search
– Query isolation
– Hidden queries

• Simple and efficient
– O(length of document) stream cipher, block cipher 

and MAC operations for encryption/decryption
– O(length of document) MAC operations for search
– Almost no space and communication overhead
– Easy to add documents
– Convenient key management :

user needs only one master key
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Administrative Matters
• Out of town starting Wed
• My office hour this week will be 5pm Tue
• John will give a guest lecture on Wed
• Rusty and Todd will do midterm review next Mon
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Midterm Scope (I)
• Symmetric key encryption

– Concept
– One-time pad
– Block cipher modes: how they work

• Public key encryption
– Concept
– How does RSA encryption/decryption work?
– How does ElGamal encryption/decryption work?

• Hash functions
– Concept of one-way, pre-image resistance, 2nd pre-image 

resistance, collision resistance
• Message authentication

– Concept
» E.g., what’s the difference between the concept of encryption and 

message authentication?
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Midterm Scope (II)
• Digital signatures

– Concept
» E.g., what’s the difference between digital signatures & MACs

– One-time signature
– ElGamal signature
– RSA signature

• Secret sharing
– Concept
– Threshold secret sharing schemes

• Zero-knowledge proofs
– Concept
– ZKP of square roots and other graph-based examples
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Midterm Scope (III)
• Authentication and key exchange protocols

– Identify potential attacks
– Do not need to know how exactly every message works

• Random number generator
– How to generate random numbers in practice
– Which sources are potentially good/bad sources of 

randomness
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Side-Channel Attacks on Crypto

• A different attacker model
– Side-channel attacks on Crypto

• Example: RSA in OpenSSL was vulnerable to 
timing attack:

– Attacker can extract RSA private key by measuring 
web server response time

• Exploiting OpenSSL’s timing vulnerability: 
– One process can extract keys from another.
– Extract web server key remotely.

» Our attack works across Stanford campus.
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Background: RSA Decryption
• RSA decryption: gd mod N = m

– d is private decryption exponent, N is public modulus

• Chinese remaindering (CRT) uses factors 
directly.  N=pq, and d1 and d2 are pre-computed 
from d:

1. m1 = gd1 mod q
2. m2 = gd2 mod p
3. combine m1 and m2 to yield   m (mod N)

• Goal:  learn factors of N.
– Kocher’s [K’96] attack fails when CRT is used.
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RSA Decryption Time Variance
• Causes for decryption time variation:

– Which multiplication algorithm is used.
» OpenSSL uses both basic mult. and Karatsuba mult.

– Number of steps during a modular reduction
» modular reduction goal: given u, compute u mod q
» Occasional extra steps in OpenSSL’s reduction alg.

• There are MANY:
– multiplications by input g
– modular reductions by factor q (and p)
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Reduction Timing Dependency

• Modular reduction:    given u, compute u mod q.
– OpenSSL uses Montgomery reductions [M’85] .

• Time variance in Montgomery reduction:
– One extra step at end of reduction algorithm

with probability
Pr[extra step] ≈ (g mod q) [S’00]

2q
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Pr[extra step] ≈ (g mod q)
2q

Value g

Decryption 
Time

q 2q p
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Multiplication Timing Dependency

• Two algorithms in OpenSSL:
– Karatsuba (fast): Multiplying two numbers of 

equal length
– Normal (slow): Multiplying two numbers of 

different length

• To calc  x⋅g mod q  OpenSSL does:
– When x is the same length as (g mod q), use 

Karatsuba mult.
– Otherwise, use Normal mult.
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Multiplication Summary

g < q
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Time

q

Normal MultiplicationKaratsuba
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g
g > q
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Data Dependency Summary
• Decryption value g < q

– Montgomery effect: longer decryption time
– Multiplication effect: shorter decryption time

• Decryption value g > q
– Montgomery effect: shorter decryption time
– Multiplication effect: longer decryption time

Opposite effects! But one will always 
dominate
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Timing Attack
High Level Attack:

1) Suppose g=q for the top i-1 bits, and 0 elsewhere.

2) ghi = g,   but with the ith bit 1.    Then g < ghi

Goal:   decide if    g<q<ghi or   g<ghi<q 

3) Sample decryption time for g and ghi:
t1 = DecryptTime(g)
t2 = DecryptTime(ghi)

4) If   |t1 - t2|  is  large   ⇒ ⇒ bit i is 0    (g < q < ghi)

else    ⇒ ⇒ bit i is 1    (g < ghi < q)don’t 
straddle q

large vs. 
small 

creates 
0-1 gap

g and ghi
straddle q
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Timing Attack Details
• We know what is “large” and “small” from attack on 

previous bits. 

• Decrypting just g does not work because of sliding 
windows

– Decrypt a neighborhood of values near g
– Will increase diff. between large and small values 
⇒ larger 0-1 gap

• Only need to recover q/2 bits of q [C’97]

• Attack requires only 2 hours, about 1.4 million queries
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The Zero-One Gap

Zero-one gap
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How does this work with SSL?

How do we get the server to decrypt our g?
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Normal SSL Decryption

Regular Client SSL Server
1. ClientHello

2. ServerHello 
(send public key)

3. ClientKeyExchange
(re mod N)

Result: Encrypted with computed shared master secret
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Attack SSL Decryption

Attack Client SSL Server

1. ClientHello

2. ServerHello 
(send public key)

3. Record time t1
Send guess g or ghi

4. Alert     

5. Record time t2
Compute t2 –t1
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Attack requires accurate clock
• Attack measures 0.05% time difference 

between g and ghi
– Only 0.001 seconds on a P4

• We use the CPU cycle counter as fine-
resolution clock

– “rdtsc” instruction on Intel
– “%tick” register on UltraSparc
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Attack extract RSA private key

Montgomery reductions
Dominates

Multiplication routine dominates

zero-one gap
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Attack extract RSA private key

Montgomery reductions
Dominates

Multiplication routine dominates

zero-one gap
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Attack works on the network

Similar timing on
WAN vs. LAN
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Attack Summary
• Attack successful, even on a WAN

• Attack requires only 350,000 – 1,400,000 
decryption queries.

• Attack requires only 2 hours.
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Defenses
Good: Use RSA blinding

BAD: Require statically all decryptions to 
take the same time

BAD: Use dynamic methods to make all 
decryptions take the same time
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RSA Blinding
• Decrypt random number related to g:

1. Compute x’ = g*re mod N, r is random
2. Decrypt x’ = m’
3. Calculate m = m’/r mod N

• Since r is random, the decryption time 
should be random

• 2-10% performance penalty
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Blinding Works!
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Conclusion
• Side-channel attacks

– Different attacker model can break security

• Crypto libraries should defend against 
side-channel attacks
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Conclusion
• We developed a timing attack based on 

multiplication and reduction timings

• Attack works against real OpenSSL-based 
servers on regular PC’s.

• Lesson:  Crypto libraries should always 
defend against timing attacks.
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Conclusion
• Ecash
• Search/computation on encrypted data

45

Conjunctive Equality Test on Encrypted Data 
(Public Key Case)

• Example:
– Check whether an encrypted file contain every 

keyword in a set
– Subset, range query
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Motivating example II: Multi-dimensional Range 
Query on Encrypted Data

• Network audit logs
– Encrypted
– An auditor may only be able to decrypt entries 

satisfying certain predicates
» E.g., p1< port p < p2, timestamp t > t1, source address a with 

prefix a1
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Traditional Encryption
• Semantic security

– Given Ek{b}, difficult to guess b=0 or 1

• Search on encrypted data
– Semantic security not suitable, by definition
– Instead, encryption with search capability

» Predicate encryption
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Predicate Encryption (Symmetric Key Case)
• Let Φ = {P1 , … , Pn}  be a set of predicates over  Σ .

Pi :   Σ → {0,1} [e.g:    Pj(S) = 1   ⇔ S ≥ j ]

• A Φ-query system consists of 4 algorithms:
– Setup (λ): outputs    SK

– Encrypt (SK, S) → Ciphertext C         (S∈Σ)

– GenCapability (SK, <P>) → Capability TP     (P∈Φ)

– Query ( TP, C) → Output

– (Can allow message decryption on “hit” when P(S)=1)

P(S)



49

Predicate Encryption (Public Key Case)
• Let Φ = {P1 , … , Pn}  be a set of predicates over  Σ.

Pi :   Σ → {0,1} [e.g:    Pj(S) = 1   ⇔ S ≥ j]

• A Φ-query system consists of 4 algorithms:
– Setup (λ): outputs    PK    and     SK

– Encrypt (PK, S) → Ciphertext C         (S∈Σ)

– GenCapability (SK, <P>) → Capability TP     (P∈Φ)

– Query ( TP, C) → Output

– (Can allow message decryption on “hit” when P(S)=1)

P(S)
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Security
• Learn nothing more than the given search 

capabilities

• Why do we need to construct the search 
capability? What if the encryption algorithm 
allows anyone to search for anything?
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State-of-the-Art (I)
• Equality test:

– Symmetric-key Case
» Goldreich, Ostrovsky, [JACM 1996]
» Song, Wagner, Perrig, [S&P 2000]

– Public-key case
» Boneh, Crescenzo, Ostrovsky, Persiano, [Eurocrypt 2004]

⎩
⎨
⎧ =

=
..0

1
)(f

wo
aX

Xa



52

State-of-the-Art (II)

• Multi-dimensional range queries: X= (x1, x2, …, xn)
[SBCSP06]

• Core technique: conjunctive queries [SBCSP06,BW06]
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Equality Test on Encrypted Data 
(Symmetric Key Case)

• Example:
– Check whether an encrypted file contain a keyword
– App: keyword search on encrypted emails


