
1

Searching on Encrypted Data and Timing Attacks

Dawn Song
dawnsong@cs.berkeley.edu

2

Motivating Example: Equality Search on
Encrypted Data

• Searching encrypted e-mails on servers
• Searching encrypted files on servers
• Searching in encrypted databases

Search query

Download emails

3

Desired Properties
• Word search is provably secure

– Provable encryption properties
– Server cannot search for arbitrary words
– Does not leak information about other words
– Does not reveal query word

• Efficiency
– Low computation overhead
– Low space and communication overhead
– Low management overhead

4

The Key Idea
Wi -1

m bits
Wi

m bits
Wi+1

m bits
… …

Si -1

m bits
Si

m bits
Si+1

m bits
… …

Ci -1 Ci Ci+1… …

⊕

Wi+1 Wi+1Wi+1

⊕

Search for Wi+1

5

Setup and Notations
• Document: sequence of fixed length words

Wi -1

m bits
Wi

m bits
Wi+1

m bits
… …

6

Setup and Notations
• Document: sequence of fixed length

words

• L0, L1, L2, …
–sequence of pseudorandom n-bit

blocks

Wi -1

m bits
Wi

m bits
Wi+1

m bits
… …

7

Setup and Notations
• Document: sequence of fixed length words

• L0, L1, L2, …
–sequence of pseudorandom n-bit blocks

• Pseudorandom Function FK
– maps n bits to (m-n) bits

Wi -1

m bits
Wi

m bits
Wi+1

m bits
… …

8

Basic Scheme (Encryption)

m bits
Wi ⊕

m bits
Ci

We xor the word Wi with

m-n bits
Ri

Ri ← FK (Li)

verification
block

n bits
Li

Li ← pseudorandom bits

pseudo-random
block

9

Basic Scheme (Decryption)

m bits

n bits

⊕
m-n bits

m bitsWi

Li Ri
Ci

Li Ri

⊕

Wi

Li ← pseudorandom bits
Ri ← FK (Li)

10

Basic Scheme (Searches)
Search for word W, give server W and K

Check: verification block OK?
Ri' = FK (Li') ?

Yes ⇒ match,
false positive rate = 1 / 2m-n

W
⊕

m bits

n bits

⊕
m-n bits

m bitsWi

Li Ri
Ci

Li' Ri'
n bits m-n bits

verification
block

11

Controlled Searches and Query Isolation
• To keep server from searching for arbitrary words &

To avoid leaking information about other words
• In encryption:

Replace
Ri ← FK (Li)

with
Ri ← FKi (Li), where Ki = F'K (Wi)

• To search for word W:
Reveal

Kw = F'K (W)
• Enhancements:

– Check only for “word occurs at least once” in document
– Check only for “word occurs at least N times” in document

12

Hidden Queries

Li

n bits
Ri

m-n bits

Wi

m bits

E(Wi)
m bits

E(.)

where Ki = F'K(E(Wi))

⊕ Ci

m bits

Li ← pseudorandom bits

Ri ← FKi (Li)

13

Final Scheme (Encryption)

Li

n bits

⊕ Ci

m bits

Ri

m-n bits

Wi

m bits

E(Wi)
E(.)

E1(Wi) E2(Wi)

where Ki = F'K(E1(Wi))

Li ← pseudorandom bits

Ri ← FKi (Li)

14

Summary for Keyword Search on Encrypted Data
(Symmetric Key Case)

• Provable security
– Provable secrecy
– Controlled search
– Query isolation
– Hidden queries

• Simple and efficient
– O(length of document) stream cipher, block cipher

and MAC operations for encryption/decryption
– O(length of document) MAC operations for search
– Almost no space and communication overhead
– Easy to add documents
– Convenient key management :

user needs only one master key

15

Administrative Matters
• Out of town starting Wed
• My office hour this week will be 5pm Tue
• John will give a guest lecture on Wed
• Rusty and Todd will do midterm review next Mon

16

Midterm Scope (I)
• Symmetric key encryption

– Concept
– One-time pad
– Block cipher modes: how they work

• Public key encryption
– Concept
– How does RSA encryption/decryption work?
– How does ElGamal encryption/decryption work?

• Hash functions
– Concept of one-way, pre-image resistance, 2nd pre-image

resistance, collision resistance
• Message authentication

– Concept
» E.g., what’s the difference between the concept of encryption and

message authentication?

17

Midterm Scope (II)
• Digital signatures

– Concept
» E.g., what’s the difference between digital signatures & MACs

– One-time signature
– ElGamal signature
– RSA signature

• Secret sharing
– Concept
– Threshold secret sharing schemes

• Zero-knowledge proofs
– Concept
– ZKP of square roots and other graph-based examples

18

Midterm Scope (III)
• Authentication and key exchange protocols

– Identify potential attacks
– Do not need to know how exactly every message works

• Random number generator
– How to generate random numbers in practice
– Which sources are potentially good/bad sources of

randomness

19

Side-Channel Attacks on Crypto

• A different attacker model
– Side-channel attacks on Crypto

• Example: RSA in OpenSSL was vulnerable to
timing attack:

– Attacker can extract RSA private key by measuring
web server response time

• Exploiting OpenSSL’s timing vulnerability:
– One process can extract keys from another.
– Extract web server key remotely.

» Our attack works across Stanford campus.

20

Background: RSA Decryption
• RSA decryption: gd mod N = m

– d is private decryption exponent, N is public modulus

• Chinese remaindering (CRT) uses factors
directly. N=pq, and d1 and d2 are pre-computed
from d:

1. m1 = gd1 mod q
2. m2 = gd2 mod p
3. combine m1 and m2 to yield m (mod N)

• Goal: learn factors of N.
– Kocher’s [K’96] attack fails when CRT is used.

21

RSA Decryption Time Variance
• Causes for decryption time variation:

– Which multiplication algorithm is used.
» OpenSSL uses both basic mult. and Karatsuba mult.

– Number of steps during a modular reduction
» modular reduction goal: given u, compute u mod q
» Occasional extra steps in OpenSSL’s reduction alg.

• There are MANY:
– multiplications by input g
– modular reductions by factor q (and p)

22

Reduction Timing Dependency

• Modular reduction: given u, compute u mod q.
– OpenSSL uses Montgomery reductions [M’85] .

• Time variance in Montgomery reduction:
– One extra step at end of reduction algorithm

with probability
Pr[extra step] ≈ (g mod q) [S’00]

2q

23

Pr[extra step] ≈ (g mod q)
2q

Value g

Decryption
Time

q 2q p

24

Multiplication Timing Dependency

• Two algorithms in OpenSSL:
– Karatsuba (fast): Multiplying two numbers of

equal length
– Normal (slow): Multiplying two numbers of

different length

• To calc x⋅g mod q OpenSSL does:
– When x is the same length as (g mod q), use

Karatsuba mult.
– Otherwise, use Normal mult.

25

Multiplication Summary

g < q

Decryption
Time

q

Normal MultiplicationKaratsuba
Multiplication

g
g > q

26

Data Dependency Summary
• Decryption value g < q

– Montgomery effect: longer decryption time
– Multiplication effect: shorter decryption time

• Decryption value g > q
– Montgomery effect: shorter decryption time
– Multiplication effect: longer decryption time

Opposite effects! But one will always
dominate

27

Timing Attack
High Level Attack:

1) Suppose g=q for the top i-1 bits, and 0 elsewhere.

2) ghi = g, but with the ith bit 1. Then g < ghi

Goal: decide if g<q<ghi or g<ghi<q

3) Sample decryption time for g and ghi:
t1 = DecryptTime(g)
t2 = DecryptTime(ghi)

4) If |t1 - t2| is large ⇒ ⇒ bit i is 0 (g < q < ghi)

else ⇒ ⇒ bit i is 1 (g < ghi < q)don’t
straddle q

large vs.
small

creates
0-1 gap

g and ghi
straddle q

28

Timing Attack Details
• We know what is “large” and “small” from attack on

previous bits.

• Decrypting just g does not work because of sliding
windows

– Decrypt a neighborhood of values near g
– Will increase diff. between large and small values
⇒ larger 0-1 gap

• Only need to recover q/2 bits of q [C’97]

• Attack requires only 2 hours, about 1.4 million queries

29

The Zero-One Gap

Zero-one gap

30

How does this work with SSL?

How do we get the server to decrypt our g?

31

Normal SSL Decryption

Regular Client SSL Server
1. ClientHello

2. ServerHello
(send public key)

3. ClientKeyExchange
(re mod N)

Result: Encrypted with computed shared master secret

32

Attack SSL Decryption

Attack Client SSL Server

1. ClientHello

2. ServerHello
(send public key)

3. Record time t1
Send guess g or ghi

4. Alert

5. Record time t2
Compute t2 –t1

33

Attack requires accurate clock
• Attack measures 0.05% time difference

between g and ghi
– Only 0.001 seconds on a P4

• We use the CPU cycle counter as fine-
resolution clock

– “rdtsc” instruction on Intel
– “%tick” register on UltraSparc

34

Attack extract RSA private key

Montgomery reductions
Dominates

Multiplication routine dominates

zero-one gap

35

Attack extract RSA private key

Montgomery reductions
Dominates

Multiplication routine dominates

zero-one gap

36

Attack works on the network

Similar timing on
WAN vs. LAN

37

Attack Summary
• Attack successful, even on a WAN

• Attack requires only 350,000 – 1,400,000
decryption queries.

• Attack requires only 2 hours.

38

Defenses
Good: Use RSA blinding

BAD: Require statically all decryptions to
take the same time

BAD: Use dynamic methods to make all
decryptions take the same time

39

RSA Blinding
• Decrypt random number related to g:

1. Compute x’ = g*re mod N, r is random
2. Decrypt x’ = m’
3. Calculate m = m’/r mod N

• Since r is random, the decryption time
should be random

• 2-10% performance penalty

40

Blinding Works!

41

Conclusion
• Side-channel attacks

– Different attacker model can break security

• Crypto libraries should defend against
side-channel attacks

42

43

Conclusion
• We developed a timing attack based on

multiplication and reduction timings

• Attack works against real OpenSSL-based
servers on regular PC’s.

• Lesson: Crypto libraries should always
defend against timing attacks.

44

Conclusion
• Ecash
• Search/computation on encrypted data

45

Conjunctive Equality Test on Encrypted Data
(Public Key Case)

• Example:
– Check whether an encrypted file contain every

keyword in a set
– Subset, range query

46

Motivating example II: Multi-dimensional Range
Query on Encrypted Data

• Network audit logs
– Encrypted
– An auditor may only be able to decrypt entries

satisfying certain predicates
» E.g., p1< port p < p2, timestamp t > t1, source address a with

prefix a1

47

Traditional Encryption
• Semantic security

– Given Ek{b}, difficult to guess b=0 or 1

• Search on encrypted data
– Semantic security not suitable, by definition
– Instead, encryption with search capability

» Predicate encryption

48

Predicate Encryption (Symmetric Key Case)
• Let Φ = {P1 , … , Pn} be a set of predicates over Σ .

Pi : Σ → {0,1} [e.g: Pj(S) = 1 ⇔ S ≥ j]

• A Φ-query system consists of 4 algorithms:
– Setup (λ): outputs SK

– Encrypt (SK, S) → Ciphertext C (S∈Σ)

– GenCapability (SK, <P>) → Capability TP (P∈Φ)

– Query (TP, C) → Output

– (Can allow message decryption on “hit” when P(S)=1)

P(S)

49

Predicate Encryption (Public Key Case)
• Let Φ = {P1 , … , Pn} be a set of predicates over Σ.

Pi : Σ → {0,1} [e.g: Pj(S) = 1 ⇔ S ≥ j]

• A Φ-query system consists of 4 algorithms:
– Setup (λ): outputs PK and SK

– Encrypt (PK, S) → Ciphertext C (S∈Σ)

– GenCapability (SK, <P>) → Capability TP (P∈Φ)

– Query (TP, C) → Output

– (Can allow message decryption on “hit” when P(S)=1)

P(S)

50

Security
• Learn nothing more than the given search

capabilities

• Why do we need to construct the search
capability? What if the encryption algorithm
allows anyone to search for anything?

51

State-of-the-Art (I)
• Equality test:

– Symmetric-key Case
» Goldreich, Ostrovsky, [JACM 1996]
» Song, Wagner, Perrig, [S&P 2000]

– Public-key case
» Boneh, Crescenzo, Ostrovsky, Persiano, [Eurocrypt 2004]

⎩
⎨
⎧ =

=
..0

1
)(f

wo
aX

Xa

52

State-of-the-Art (II)

• Multi-dimensional range queries: X= (x1, x2, …, xn)
[SBCSP06]

• Core technique: conjunctive queries [SBCSP06,BW06]

⎩
⎨
⎧ =∧=

=
..0

)()(1
)(f 31

, wo
bxax

Xba

⎩
⎨
⎧ ∈∧∈

=
..0

]),[()],[(1
)(f 213211

,,, 2121 wo
bbxaax

Xbbaa

(IP ∈ 128.2.*.*) Æ (port ∈ [1000, 2000])

(IP ∈ 128.2.*.*) Æ (port = 1434)

53

Equality Test on Encrypted Data
(Symmetric Key Case)

• Example:
– Check whether an encrypted file contain a keyword
– App: keyword search on encrypted emails

