
Additional Guidelines and Suggestions for
Project Milestone 1

CS161 Computer Security, Spring 2008

Some students may be a little vague on what to cover in the Milestone 1
submission for the course project, so we have written this document to pro-
vide some more specific guidance and ideas.

Design Considerations

First of all, each team should spend a little time getting some background on
the PostScript language. We recommend you take a look at the PostScript
Language Tutorial and Cookbook (a.k.a. the “blue book”), which can be
obtained by searching online or from http://inst.eecs.berkeley.edu/

~cs161/sp08/Projects/psintro.pdf. Don’t worry about reading that doc-
ument in detail! You should be fine just reading the first couple chapters and
quickly skimming the rest, which should only take about 30 minutes or so.
Also, the operator summary in the appendix may be a handy reference.

The main question to be addressed in your design document is how you
will represent the syntax and (possibly to some extent) semantics of the
PostScript language within your program. The most rudimentary approach
would be to include a list of PostScript keywords / built in operators (“add”,
“def”, “dup”, “showpage”, etc.), then construct a test document by just con-
catenating random sequences of these along with string and numeric literals.
However, most such sequences will simply cause the PostScript interpreter
to immediately exit with an error. For example, any sequence that begins
with “add” or any other operator that takes arguments will cause a stack
underflow as soon as the first token is read.1 So in order to better test the

1Of course, it would be good for your fuzzer to be able to generate highly invalid

1



interpreter, you will probably want to at least take into account the number
of arguments that each operator takes (pops off the operand stack) and the
number of results it returns (pushes back on to the stack). Given that infor-
mation, a random PostScript program could be constructed as an expression
tree, then output in postfix order to form a document which is valid at least
in terms of the operand stack. Since there are operators which take and re-
turn a variable number of arguments (e.g., “copy”), you may not always be
able to ensure this sort of validity, but that’s okay. You just want your fuzzer
to be capable of eliciting a fairly wide range of behaviors from the interpreter
rather than causing it to immediately exit with an error every time.

Another thing to consider is whether your fuzzer will give any particular
operators or language constructs specific testing treatment. For example, the
“get” operator indexes into arrays, so maybe you would want your fuzzer to
test a range of negative or out of bounds values for the index. As another
example, you might want to test the interpreter on various sorts of quoted
string literals such as very long ones or ones with special characters. If you
have any specific types of tests such as these in mind, they could be either
incorporated into your primary method for generating a random PostScript
program / document, or they could be separated out as distinct tests via the
SPEC argument given to your fuzzer (see main project description).

When considering these issues with respect the specially modified pstotext(1)

program which will be provided for testing and grading, don’t pay too much
attention to how that program works. In particular, don’t worry about how
the actual pstotext program is implemented; you might as well assume we
implemented ours from scratch. Our only intention in selecting this program
was to pick a program that reads PostScript, so just assume it uses a com-
plete PostScript interpreter / renderer internally rather than using some sort
of shortcut that just extracts text.

However you choose to design the high level approach to generating ran-
dom PostScript documents, ideally your design will fit into a more general
framework for specifying data formats to your fuzzer (for example, the prob-
abilistic context free grammars mentioned in the main project description).
While not a requirement, a more general system will be easier to adapt to
other programs, which may allow you to gain extra credit without much
additional work.

programs such as these, but if that is all it can do, its tests will not be very comprehensive.

2



Implementation Considerations

To get you thinking about your design in greater detail, we’ve included be-
low a list of implementation-level questions you should consider addressing
in your Milestone 1 submission (in addition to the high level design issues
discussed so far). It’s not necessary to answer every one of these questions
in order to get full credit on your submission, but the more you address, the
better the feedback we will be able to give you early in the project. Our goal
is for the project to go smoothly and easily for each team, minimizing the
work necessary to reach a satisfactory level of success!

• What programming language(s) will you use to write your
fuzzer? Will there be any difficulties in compiling and running your
code on ilinux1.eecs.berkeley.edu?

• Are there any libraries or other external sources of code you
plan to use? If there is any library or existing source code that would
reduce your work, we absolutely encourage you to use it. We’re not
trying to test your ability to write computer programs – the goal is to
learn about fuzz testing.

• If you are planning on using a library, is it available on the
ilinux machines? If not, will you be about to bundle it up in the
tarball you eventually submit so your program works? It’s fine to
include a library or other external code in compiled form if that is the
easiest way to get it to work. Your code, however, should be included
as source.

• How will you spawn the program being tested as a child pro-
cess and check whether it has exited due to signal 11 or a
timeout? In Linux, this is typically done through a combination of
the fork(2), execve(2), and wait(2) (with WNOHANG in order to allow
for a timeout) system calls. In C/C++, they can be called directly;
other languages often provide a higher level interface to this function-
ality.

• How will your fuzzer generate pseudorandom numbers? Just to
keep things straight, note that there are two separate “random” things
that your fuzzer will need to do. First, for each test run, it will need to

3



pick a new pseudorandom number generator (PRNG) seed. This need
not be reproducible, so you could just read however many bytes the
seed needs from /dev/urandom.2 More importantly, given a seed value,
your fuzzer will have to use it to seed a PRNG, then use that PRNG
for all the random selections made in the course of constructing a test
input. Possibilities for this PRNG include using one in some sort of
standard library, one which is a built in feature of the programming
language you are using, one you downloaded source code for, or one
you wrote yourself. Note that it doesn’t have to be cryptographically
secure, but you may want to consider how large a seed it can handle.
A PRNG with a 32-bit seed will be limited to generating about four
billion distinct test inputs.

• Are there any particular programs other than the special test-
ing program which you are considering trying your fuzzer
on? Running your fuzzer on other programs isn’t a requirement of
the project, but may be a good way to get extra credit. In partic-
ular, without any extra work, you should be able to try your fuzzer
on any program that reads PostScript, since you will be implementing
PostScript generation anyway.

2Just going through seeds sequentially would also work fine, you would just need to
remember the ranges you’ve already tested between different runs of your program.

4



Template Milestone 1 Submission

Below we have provided a sample organization for your Milestone 1 submis-
sion, which should be one or two total pages in length. The timetable and
division of labor are of course just examples.

CS161 Computer Security, Spring 2008
Project Milestone 1

Team: Alice, Bob, Eve, and Mallory

Design

Here you should describe the high level approach your fuzzer will take to generate random PostScript
documents and other types of program test inputs (if applicable). Specifically, describe the space of
the PostScript documents that your fuzzer is intended to explore and how it will sample from that
space.

Implementation

Here you should discuss the lower level details of how you plan to implement your fuzzer, including
choice of programming language, PRNG, etc.

Division of Labor and Timetable

Person Tasks
Alice Write up for Milestones 1 and 2, pre Milestone 2 implementation.
Bob Final write up, pre Milestone 2 implementation.
Eve Final write up, post Milestone 2 implementation.
Mallory Post Milestone 2 implementation, testing of additional programs for extra credit.

Date Goals
Apr 4 Repository, skeleton code, and build system set up.
Apr 18 Code for Milestone 2 complete.
Apr 25 First batch of bugs in testing program discovered.
May 2 Most bugs in testing program discovered, begin searching for extra credit bugs.
May 9 Code and final write up done.

5


