CS 161 Computer Security
Spring 2010 Paxson/Wagner HW 4 SOll’l

1. (40 pts.) Blind Signatures and Digital Cash

(a)

(b)

CS 161, Spring 2010, HW 4 Soln

It would sometimes be useful to have electronic forms of payment that provide anonymity the way that
paper cash does. Blind signatures provide a way to do that. In a blind signature, the contents of the
document being signed are never revealed to the signer.

Here is one blind signature scheme that uses RSA signatures. Bob has a public key n (his RSA
modulus) and a private key d. Alice wants Bob to sign the message m blindly.

1. Alice chooses a random value r uniformly at random from the set {r € Z: 1 <r <n and gcd(r,n) =

1}. Alice blinds the message by computing ¢ = mr> mod n.

2. Bob signs ¢ by computing u = t mod n and returning u to Alice.

Show how Alice can unblind « to obtain a valid signature s = m? mod n on m. In other words, show

how Alice can compute s, based upon the information she knows and the information she has received
from Bob. (Of course, Alice does not know Bob’s private key d, so your solution must not assume
knowledge of d.)

Answer: Remember, u =t = (mr’)? = m%r* = m?r mod n. So Alice can unblind Bob’s response
. d
by computing s = % = "- = m? mod n.

In the protocol above, suppose Bob does not know the message m that Alice wants signed, but Bob
somehow knows it must be either mq or m;. Can Bob distinguish which is the case, more effectively
than random guessing (e.g., is there some strategy he can use to guess correctly with probability 3 /4
or greater)? Justify your answer carefully.

HINT: The function f(r) = r* mod 7 is one-to-one: if r # s mod n, then r* # s*> mod n.

Answer 1: No. Given t = mr> mod n, but with no knowledge of r, Bob cannot determine whether
m = mg or m =m;. Since r is uniformly distributed on the set S={re€Z:1<r<nand ged(r,n) =1},
and since f : S — S is one-to-one, it follows that f(r) is uniformly distributed on the set S, too. In other
words, 7> mod n is uniformly distributed on S.

Also, the function g : § — S given by g(x) = mox mod n is one-to-one, so g(f(r)) is uniformly dis-
tributed on S. In other words, mor> mod n is uniformly distributed on S, as is 1 r? mod n. Since they
both have the exact same distribution, Bob cannot distinguish between them.

Answer 2: No. Bob receives t = mr® mod n.

Suppose Bob hypothesizes that the message was myg. Then there is exactly one value of r that is
consistent with this hypothesis, namely, the value ro = f~!(¢/myg). (Here we are using the fact that f
is one-to-one, to ensure that such an inverse exists and is unique.)

Similarly, if Bob hypothesizes that the message was mj, there will be exactly one value of r that is
consistent with this hypothesis, namely, r; = f~!(t/my).

s

Either way, there is exactly one value of r consistent with Bob’s hypothesis, so we cannot rule out either
hypothesis. Moreover, since r is uniformly distributed, we have no reason to favor one hypothesis over
the other. (This can be formalized by a calculation using conditional probability, which we omit.)

Answer 3: No. Define a = ° mod n. The hint tells us that, since r is uniformly distributed on the
set S={reZ:1<r<nand ged(r,n) = 1}, so too is ¢, since & = f(r). Bob receives ¢, where
t = mo. mod n, but Bob has no knowledge of ¢. This is effectively a one-time pad encryption of
m under the pad o, except that instead of using xor to combine the pad with the message, we use
multiplication modulo n. The proof of security for the one-time pad can be adapted to prove that ¢
gives us no information—not even partial or probabilistic information—about whether the message
was mypy or mj.

Comment: What this tells you is that Bob learns nothing about Alice’s message m. Bob does not
even learn partial or probabilistic information about m. Even if Bob had some way to narrow down m
to one of a few possibilities through some other means, the blind signature protocol does not give him
any additional information about m. That’s why it is called a blind signature protocol: Bob blindly
signs a message, without any idea what message he just signed. Normally, blindly signing an unknown
message would be a terrible idea, but as we see in the rest of this question, the blind signature protocol
can be a useful building block for designing digital cash schemes.

(c) Going back to our desire for digital cash, our requirements for a digital cash protocol are:
1. The bank cannot tell where the customer is spending his/her digital cash. In particular, the bank
does not learn which merchant the customer spends his/her money at.
2. The merchant cannot identify the customer from the digital cash he/she provides to the merchant.
3. The merchant has some way of checking that the digital cash is not counterfeit.
4. The digital cash cannot be copied and spent twice.
Below we lay out one digital cash protocol. In our protocol there are three players: Carol, the customer;

BankOBits, the bank; and Maxine, the merchant. Let coin = (¢,s) where s = Signggg(c) and ¢ = the
value of the coin in dollars.

Imagine the following protocol:

3 mod n.

a. Carol wants some digital cash in the amount of ¢ dollars. She blinds ¢, obtaining t = cr
b. Carol opens a secure channel to BankOBits and sends BankOB:its the following: c,z.

c. BankOBits authenticates Carol (you can assume this is done correctly), decrements Carol’s ac-
count balance by ¢ dollars, and returns the signed, blinded coin: u = ¢ mod n.

d. Carol can now unblind u to recover the signed coin, coin = (c,c? mod n).

e. When Carol presents the coin to Maxine some time later to buy valuable goods from Maxine,
Maxine can verify the bank’s signature and feel confident the coin is valid.

f. Finally, Maxine can present the coin (c,c? mod 1) to BankOBits to get the money deposited into
her account. BankOBits will first verify the signature before honoring the coin and increasing
Maxine’s account balance by c¢ dollars.

With this protocol, one way that Carol can cheat is to double-spend. That is, she can make a digital
copy of ¢? and present it to two different merchants. Name one other way that Carol can cheat the
bank to get free money.

Answer 1: Carol can send to the bank c,# where ¢ = $5 and ¢ = 107* mod n. The bank will sign a
coin worth $10, but only deduct $5 from Carol’s account.

CS 161, Spring 2010, HW 4 Soln 2

Answer 2: Carol can withdraw a valid coin worth $10, by using the protocol above:
coin; = (c1,s1) = (10, 10¢ mod n).
Then, she can withdraw a valid coin worth $6, again using the protocol above:
coiny = (¢2,52) = (6,67 mod n).
She can then use these two valid coins to create a third coin:
coing = (cyc2,515 mod n) = (60,67 x 107 mod n) = (60,60¢ mod n).

Both the merchant and bank will accept this coin as valid, since the signature is valid. Note that once
Carol obtains the first two coins from the bank, she has all the information needed to form the third
coin entirely on her own (without interacting with the bank). In the process of withdrawing the first
two coins, Carol’s account will be reduced by $16. However, Carol now has three valid coins worth a
total of $76. Profit!

(d) Dr. Alizarin suggests that we fix the protocol by making the denomination ¢ the same for all coins:
the bank will announce in advance that every coin signed under the modulus n will be worth exactly
one dollar. Now, the coin will be derived from a random 128-bit string z. In particular, the coin will be
given by coin = (z,s) where s = H(z)? mod n.

Whenever a merchant receives a putative coin from a customer, the merchant immediately deposits it
with the bank. When a merchant presents a signed coin to the bank for deposit, BankOBits checks its
database to make sure a coin with the same string z hasn’t been previously deposited. If the coin has
not been previously deposited and is validly signed, BankOBits increments the merchant’s balance,
adds z to the database, and returns a success message to the merchant; otherwise, BankOBits returns
an error message to the merchant. The merchant ships the goods to the customer only after receiving a
success message from the bank.

Will Dr. Alizarin’s scheme prevent counterfeit/copied coins? In other words, does it satisfy require-
ments 3 and 4 above?

Answer: Yes.

Comment: Because the bank stores a list of all previously-deposited coins, each coin can be spent
only once. Because the coin is signed by a secure signature scheme, coins cannot be counterfeited.
The cryptographic hash function H prevents the attack listed in “Answer 2” to part (c).

(e) Does Dr. Alizarin’s scheme satisfy requirement 2 above?

Answer: Yes.

(f) Suppose Carol is one of 10,000 customers withdrawing coins on Monday, and 500 merchants deposit
coins on Tuesday. Assuming Alice spent some of her coins at some merchant on Tuesday, can the bank
identify exactly which merchant Alice spent her digital cash at?

Based on this, do you think that Dr. Alizarin’s scheme satisfies requirement 1 above? You can assume
BankOBits has been wildly successful and has many customers, and that customers tend to withdraw
coins from the bank well in advance and spend them only much later.

CS 161, Spring 2010, HW 4 Soln 3

Answer: The bank cannot identify at which merchant Alice spent her cash; the scheme does satisfy
requirement 1. When the bank receives a coin (z,H(z)?) from by the merchant, the bank cannot tell
which customer withdrew this coin, due to the blind signature.

In more detail, suppose there were 10,000 instances of the withdrawal protocol, so the bank sees
f1,-..,t10000 (# is the blinded version of H(z;), for the ith coin withdrawn; i.e., t;, = H (z,-)rl-3 mod n).
Now suppose that some coin (z;, H(z;)?) is presented to the bank for deposit. The bank cannot identify
which of the 10,000 withdrawal requests this corresponds to, for reasons similar to those articulated
in response to question 1(b). In short, the bank has no way to link withdrawals to deposits. As far
as the bank can tell, each deposited coin might have come from any of the customers who previously
withdrew a coin of the same denomination.

Comment: In fact, Dr. Alizarin’s scheme is a well-known scheme for anonymous digital cash. It
was invented by the cryptographer David Chaum, while he was a Ph.D. student at Berkeley, and was
later deployed for a brief time by a company called Digicash. However, Digicash eventually folded,
along with many other startups developing payment schemes; Paypal eventually beat out most of the
competition.

(g) Prof. Jasper is unhappy that Dr. Alizarin’s scheme requires the merchant to contact the bank immedi-
ately. Prof. Jasper proposes an alternate scheme that allows the merchant to accept digital cash, even
if the merchant is not Internet-connected at the time of purchase. In particular, Prof. Jasper proposes
that a coin should have the form coin = (c||z,s) where s = Signgog(c||z), i.e., s = m? mod n where
m = H(c||z). (Here || denotes concatenation of bit strings.) Whenever a merchant presents a signed
coin to the bank for reimbursement, BankOBits checks its database to make sure a coin with the same
string z hasn’t been previously deposited.

In addition, if the bank does detect double-spending it would like to know if it was the merchant or a
customer who tried to cheat. To aid in this, BankOBits requires that after the merchant has verified the
signature on (c||z,s), the merchant asks the customer to provide a random 128-bit string id, and the
merchant provides (c||z,s,id) to BankOBits. If, when the merchant presents (c||z,s,id) to the bank,
the bank detects double-spending (i.e., some other coin with the same z was previously deposited), the
bank will then compare the value of id on the coin provided by Maxine to the value of id stored in the
database with the doubly-spent coin. If the values of id are the same then the bank knows the merchant
cheated. If they are different then the bank knows that the customer cheated.

Will Prof. Jasper’s scheme work? That is, will the bank be able to tell whether it was the merchant or
Carol who cheated in the case of doubly-spent money?

Answer 1: Prof. Jasper’s scheme will not work. Carol can frame the merchant by using the same id
twice. If the bank is not tracking which merchant presented which coin then Carol can use the same
id at two different merchants. If the merchants are not tracking which id’s they’ve already seen then
Carol can use the same id twice at the same merchant.

Answer 2: Prof. Jasper’s scheme will not work. The merchant can frame Carol. The merchant can
present the same coin to the bank twice, but change the id to a new value each time.

2. (30 pts.) Onion Routing

(a) Give two reasons why usability might be considered a security requirement for using onion routing for
anonymity (such as by systems like Tor).

CS 161, Spring 2010, HW 4 Soln 4

Answer: Four possible answers are:

(a) Onion routing protocols hides each user within a large population of users. If the protocol is hard
to use, it will attract fewer users, providing less anonymity for those who do use the protocol.
Anonymity in Tor relies upon being just one in a crowd; if only N people use Tor, then an attacker
can deduce that any particular Tor connection must have come from one of those N people, so the
larger N is, the better anonymity everyone receives.

(b) If the protocol is hard to use, there will be fewer users, making it easier for an adversary to control
a large proportion of onion routers. The larger the proportion of onion routers controlled by the
attacker, the greater the likelihood that for any individual Tor connection, all onion routers on the
path will be controlled by the attacker; when that happens, all anonymity is lost.

(c) If the protocol is hard to use, users may be more likely to set up their nodes improperly, making
the protocol insecure for all users whose traffic passes through those nodes.

(d) If the protocol is hard to use, users will turn it off completely, losing all anonymity.

(b) Bob is concerned about his privacy online so he always uses an onion router (the same as a “mix”
discussed in lecture). He makes sure that all his outgoing traffic (e.g., HTTP requests, DNS requests)
goes via the onion router. However, Bob does not take any steps to scrub the contents of his requests
of identifying information. For each of the following, briefly describe whether it could be used by a
web server Bob visits to learn Bob’s identity, and explain why or why not.

i. Cookies

Answer: If Bob accepts cookies from a web server, all future requests to that server will be
accompanied by the cookies. The server may not learn Bob’s IP address, but it could easily track
all of Bob’s activities on the server (i.e., link these activities and deduce that all of these activities
were performed by the same person). Certainly, if Bob reveals any identifying information in one
request (e.g. if he provides his name on some form), that information can be tied to all of his
requests.

ii. Web bugs

Answer: Web bugs allow third parties to track visitors to your site. This would let a server track
all of Bob’s activities, not just at one site, but across all sites that include a web bug from that third
party. The third party may not learn Bob’s IP address or name, but will be able to put together a
trace of sites visited by Bob. Depending on what kind of sites Bob visits, this could be used to put
together a likely profile of Bob.

iii. Referer field

Answer: The Referer field will reveal information about the previous site that Bob visited. This
wouldn’t reveal Bob’s IP or name, but it could leak some identifying information (e.g., if the
previous site was DegrassiHigh2005Renunion. com).

iv. Google Analytics

Answer: Google Analytics collects and reports a great deal of information, including the loca-
tion and host name of the client. This is personally identifiable information.

(c) Suppose Alice sends a message to Bob using the onion routing protocol described in class. Neither
Bob nor any of the onion router mixes (other than the first) along the circuit know the identity of
Alice. How would you augment the protocol to allow Bob to send a reply to Alice without learning

CS 161, Spring 2010, HW 4 Soln 5

the identity of Alice? What could Alice include in her initial message that Bob could then use to get a
message back without learning her identity? You may add new functionality to all onion routers, but
you must explain how your new functionality would work.

Answer: There are a bunch of ways to do it, but one simple way involves setting up a reply channel
back through the mixes. When Alice sets up a route to Bob through mixes M;, M}, M (in that order),
she also sends instructions to the individual mixes to establish a return channel that Bob can use to
send responses back to her. This sets up everything Bob needs to get a response back to Alice, without
revealing Alice’s identity.

Let’s see how this could work, starting with a simple case where Alice’s path contains just a single
Tor router (a single hop). Suppose she decides to route through mix M;, whose public key is K;. She
establishes a pseudonym P, and sends M; the following instructions encrypted under K;:

{“Whenever you receive a message addressed to pseudonym P, please forward it on to Alice.” }x,

When she sends a message to Bob, she sends him the pseudonym P, and instructs him to encrypt his
reply under key Kajice, address his reply to pseudonym P at mix M;, and encrypt the whole thing under
key K;. In other words, if Bob wants to reply with the message X, he sends

{P7 {X}KAlice }Ki

to M;. Now the mix M; can decrypt, see that this is addressed to pseudonym P, look up pseudonym P
in its table of pseudonyms, and find out that the corresponding message should be forwarded to Alice;
so M; sends {X }k,,. to Alice. That’s a single hop.

If Alice wants better anonymity, she can use two hops. Maybe she decides to route through mixes M;
and M;, whose public keys are K; and K;. Then she would set up a pseudonym P; and send M, the
following instructions, encrypted under K;:

{*“Whenever you receive a message addressed to pseudonym Pj, please forward it on to Alice.”} k.
Alice would also set up a pseudonym P, and send M the instructions:

{“Whenever you receive a message addressed to pseudonym P>, please forward it on to M;,
addressed to Py and encrypted under key K;.”} K
The instructions are encrypted under key M; and send it to M; over an anonymized path that goes
through M;, so M; does not learn Alice’s identity. Finally, when Alice contacts Bob over the anonymous

channel, she instructs him to send his reply to M; and address it to pseudonym P. So if Bob wants to
reply with message X, he sends

{P27 {X}KAlice }Kj
to M;. Mix M; can decrypt, look up the pseudonym P, and send

{Pl) {X}KAlice }Ki

to M;. Mix M; can decrypt, look up Py, and forward to Alice:

{X }KA]ice

Note that neither mix is able to deduce that Alice is corresponding with Bob. M; knows that someone
is corresponding with Bob through M;, but doesn’t know the client’s identity; M; knows that Alice is
corresponding with someone through M, but doesn’t know who is sending replies back to her. Thus
anonymity is preserved.

You can generalize this to multiple hops.

CS 161, Spring 2010, HW 4 Soln 6

3. (30 pts.) Reasoning about memory-safety
We’d like to know the conditions under which sanitize () is memory-safe, and then prove it.

Find the blank space labelled (a) requires: and fill it in with the precondition that’s required for
sanitize () to be memory-safe. (If several preconditions are valid, you should list the most general
precondition under which it is memory-safe.)

Then, find the four blanks (b)—(e) inside sanitize () and fill each of these with invariants so that (1)
each invariant is guaranteed to be true whenever that point in the code is reached, assuming that all of
sanitize ()’s callers respect the precondition that you identified, and (2) your invariants suffice to prove
that sanitize () is memory-safe, assuming that it is called with an argument that satisfies the precondition
that you identified.

Answer:

/* (a) requires: s != NULL && 0 <= n <= size(s) =/
int sanitize (char s[], size_t n) {

size_t i=0, 3=0;

while (j<n) {

/* (b) invariant: s != NULL && 0 <= i <= j < n <= size(s) =*/
if (issafe(s[j])) {

s[i] = s[3jl;

i++; J++;

/* (c) invariant: s != NULL && O < i <= j <= n <= size(s) =/
} else {

Jt+;

/* (d) invariant: s != NULL && 0 <= 1 < J <= n <= size(s) =*/
}
/* (e) invariant: s != NULL && 0 <= i <= j <= n <= size(s) */

}

return 1i;

}
int issafe(char c) {
return (a’ <= c¢c && c <= "z") || (0" <= c¢c && c <="9") || (¢c == "_");

CS 161, Spring 2010, HW 4 Soln 7

