
CS 161 Computer Security
Spring 2010 Paxson/Wagner Notes 1/22

Common implementation flaws—memory safety
In the next few lectures we will be looking at software security—problems associated with the software
implementation. You may have a perfect design, a perfect specification, perfect algorithms, but still have
implementation vulnerabilities. In fact, after configuration errors, implementation errors are probably the
largest single class of security errors exploited in practice.

We will start by showing you some common implementation flaws. Because many security-critical appli-
cations have been written in C, and because C has peculiar pitfalls of its own, many of these examples will
be C-specific. However, implementation flaws can occur at all levels: in improper use of the programming
language, the libraries, the operating system, or in the application logic. By far the most common class of
implementation flaw is the buffer overrun, so we will start there.

1 Buffer overflow vulnerabilities
Well start with one of the most common types of error—buffer overflow (also called buffer overrun) vul-
nerabilities. Buffer overflow vulnerabilities are a particular risk in C. Since it is an especially widely used
systems programming language, you might not be surprised to hear that buffer overflows are one of the most
pervasive kind of implementation flaws around.

As a low-level language, we can think of C as a portable assembly language. The programmer is exposed
to the bare machine (which is one reason that C is such a popular systems language). A particular weakness
that we will discuss is the absence of automatic bounds-checking for array or pointer access. A buffer
overflow bug is one where the programmer fails to perform adequate bounds checks, triggering an out-of-
bounds memory access that writes beyond the bounds of some memory region. Attackers can use these
out-of-bounds memory accesses to corrupt the program’s intended behavior.

Let us start with a simple example.

char buf[80];
void vulnerable() {

gets(buf);
}

In this example, gets() reads as many bytes of input as are available on standard input, and stores them
into buf[]. If the input contains more than 80 bytes of data, then gets() will write past the end of buf,
overwriting some other part of memory. This is a bug. This bug typically causes a crash and a core-dump.
What might be less obvious is that the consequences can be far worse than that.

To illustrate some of the dangers, we modify the example slightly.

CS 161, Spring 2010, Notes 1/22 1



char buf[80];
int authenticated = 0;
void vulnerable() {

gets(buf);
}

Imagine that elsewhere in the code, there is a login routine that sets the authenticated flag only if the
user proves knowledge of the password. Unfortunately, the authenticated flag is stored in memory
right after buf. If the attacker can write 81 bytes of data to buf (with the 81st byte set to a non-zero value),
then this will set the authenticated flag to true, and the attacker will gain access. The program above
allows that to happen, because the gets does no bounds-checking: it will write as much data to buf as
is supplied to it. In other words, the code above is vulnerable: an attacker who can control the input to the
program, can bypass the password checks.

Now consider another variation:

char buf[80];
int (*fnptr)();
void vulnerable() {

gets(buf);
}

The function pointer fnptr is invoked elsewhere in the program (not shown). This enables a more serious
attack: the attacker can overwrite fnptr with any address of his choosing, and redirecting program exe-
cution to some other memory location. A crafty attacker could supply an input that consists of malicious
machine instructions, followed by a few bytes that overwrite fnptr with some address A. when fnptr
is next invoked, the flow of control is re-directed to address A. Notice that in this attack, the attacker can
choose the address A however he likes—so, for instance, he can choose to overwrite fnptr with an address
where the malicious machine instructions will be stored (e.g., the address &buf[0]). This is a malicious
code injection attack. Of course, many variations on this attack are possible: for instance, the attacker could
arrange to store the malicious code anywhere else (e.g., in some other input buffer), rather than in buf, and
re-direct execution to that other location.

Malicious code injection attacks allow an attacker to sieze control of the program. At the conclusion of
the attack, the program is still running, but now it is executing code chosen by the attacker, rather than the
original software. For instance, consider a web server that receives requests from clients across the network
and processes them. If the web server contains a buffer overrun in the code that processes such requests, a
malicious client would be able to seize control of the web server process. If the web server is running as
root, once the attacker seizes control, the attacker can do anything that root can do; for instance, the attacker
can leave a backdoor that allows him to log in as root later. At that point, the system has been “owned.”

Buffer overflow vulnerabilities and malicious code injection are a favorite method used by worm writers and
attackers. A pure example such as we showed above is relatively rare. However, it does occur: for instance,
it formed the vectors used by the first major Internet worm (the Morris worm). Morris took advantage of
a buffer overflow in in.fingerd (the network finger daemon) to overwrite the filename of a command
executed by in.fingerd, similar to the example above involving an overwrite of an “authenticated” flag.
But pure attacks, as illustrated above, are only possible when the code satisfies certain special conditions:
the buffer that can be overflowed must be followed in memory by some security-critical data (e.g., a function
pointer, a flag that has a critical influence on the subsequent flow of execution of the program). Because

CS 161, Spring 2010, Notes 1/22 2



these conditions occur only rarely in practice, attackers have developed more effective methods of malicious
code injection.

2 Stack smashing
One powerful method for exploiting buffer overrun vulnerabilities takes advantage of the way local variables
are layed out on the stack.

We need to review some background material first. Let’s recall C’s memory layout:

text region heap stack

0x00..0 0xFF..F

The text region contains the executable code of the program. The heap stores dynamically allocated data
(and grows and shrinks as objects are allocated and freed). Local variables are stored and other information
associated with each function call is stored on the stack (which grows and shrinks with function calls and
returns). In the picture above, the text region starts at smaller-numbered memory addresses (e.g., 0x00..0),
and the stack region ends at larger-numbered memory addresses (0xFF..F).

Function calls push new stack frames onto the stack. A stack frame includes space for all the local variables
used by that function, and other book-keeping information used by the compiler for this function invocation.
On Intel (x86) machines, the stack grows down. This means that the stack grows towards smaller memory
addresses. There is a special register, called the stack pointer (SP), that points to the beginning of the current
stack frame. Thus, the stack extends from the address given in the SP until the end of memory, and pushing
a new frame on the stack involves subtracting the length of that frame from SP.

Intel (x86) machines have another special register, called the instruction pointer (IP), that points to the next
machine instruction to execute. For most machine instructions, the machine reads the instruction pointed
to by IP, executes that instruction, and then increments the IP. Function calls cause the IP to be updated
differently: the current value of IP is pushed onto the stack (this will be called the return address), and the
program then jumps to the beginning of the function to be called. The compiler inserts a function prologue—
some automatically generated code that performs the above operations—into each function, so it is the first
thing to be executed when the function is called. The prologue pushes the current value of SP onto the stack
and allocates stack space for local variables by decrementing the SP by some appropriate amount.

When the function returns, the old SP and return address are retrieved from the stack, and the stack frame is
popped from the stack (by restoring the old SP value). Execution continues from the return address.

After all that background, we’re now ready to see how a stack smashing attack works. Suppose the code
looks like this:

void vulnerable() {
char buf[80];
gets(buf);

}

When vulnerable() is called, a stack frame is pushed onto the stack. The stack will look something
like this:

buf saved SP ret addr caller’s stack frame · · ·

CS 161, Spring 2010, Notes 1/22 3



If the input is too long, the code will write past the end of buf and the saved SP and return address will be
overwritten. This is a stack smashing attack.

Stack smashing can be used for malicious code injection. First, the attacker arranges to infiltrate a malicious
code sequence somewhere in the program’s address space, at a known address (perhaps using techniques
previously mentioned). Next, the attacker provides a carefully-chosen 88-byte input, where the last four
bytes hold the address of the malicious code1. The gets() call will overwrite the return address on the
stack with the last 4 bytes of the input—in other words, with the address of the malicious code. When
vulnerable() returns, the CPU will retrieve the return address stored on the stack and transfer control
to that address, handing control over to the attacker’s malicious code.

The discussion above has barely scratched the surface of techniques for exploiting buffer overrun bugs.
Stack smashing was first introduced in 1996 (see “Smashing the Stack for Fun and Profit” Aleph One).
Modern methods are considerably more sophisticated and powerful. These attacks may seem esoteric, but
attackers have become highly skilled at exploiting them. Indeed, you can find tutorials on the web explaining
how to deal with complications such as:

• The malicious code is stored at an unknown location.

• There is no way to introduce malicious code into the program’s address space.

• The buffer is stored on the heap instead of on the stack.

• The attack can only overflow the buffer by a single byte2.

• The characters that can be written to the buffer are limited (e.g., to only lowercase letters)3.

Buffer overrun attacks may appear mysterious or complex or hard to exploit, but in reality, they are none of
the above. Attackers exploit these bugs all the time. For example, the Code Red II worm compromised 250K
machines by exploiting a buffer overflow bug in the IIS web server. In the past, many security researcher
have underestimated the opportunities for obscure and sophisticated attacks, only to later discover that the
ability of attacker to find clever ways to exploit these bugs exceeded their imaginations. Attacks once
thought to be esoteric to worry about are now considered easy and routinely mounted by attackers. The
bottom line is this: If your program has a buffer overflow bug, you should assume that the bug is exploitable
and an attacker can take control of your program.

How do you avoid buffer overflows in your code? One way is to check that there is sufficient space for what
you will write before performing the write.

3 Format string vulnerabilities
Let’s look next at another type of vulnerability:

1In this example, I am assuming a 32-bit architecture, so that SP and the return address are 4 bytes long. On a 64-bit architecture,
SP and the return address would be 8 bytes long, and the attacker would need to provide a 96-byte input whose last 8 bytes were
chosen carefully to contain the address of the malicious code.

2In one of the most impressive instances of this I have ever seen, the Apache webserver at one point had an off-by-one bug
that allowed an attacker to zero out the next byte immediately after the end of the buffer. The Apache developers downplayed the
impact of this bug and assumed it was harmless—until someone came up with a clever and sneaky way to mount a malicious code
injection attack, using only the ability to write a single zero byte one past the end of the buffer.

3Imagine writing a malicious sequence of instructions, where every byte in the machine code has to be in the range 0x61 to
0x7A (’a’ to ’z’). Yes, it’s been done.

CS 161, Spring 2010, Notes 1/22 4



void vulnerable() {
char buf[80];
if (fgets(buf, sizeof buf, stdin) == NULL)

return;
printf(buf);

}

Do you see the bug? The last line should be printf("%s", buf). If buf contains any % characters,
printf() will look for non-existent arguments, and may crash or core-dump the program trying to chase
missing pointers. But things can get much worse than that.

If the attacker can see what is printed, the attacker can mount several attacks:

• The attacker can learn the contents of the function’s stack frame. (Supplying the string "%x:%x"
reveals the first two words of stack memory.)

• The attacker can also learn the contents of any other part of memory, as well. (Supplying the string
"%s" treats the next word of stack memory as an address, and prints the string found at that address.
Supplying the string "%x:%s" treats the next word of stack memory as an address, the word after
that as an address, and prints what is found at that string. To read the contents of memory starting
at a particular address, the attacker can find a nearby place on the stack where that address is stored,
and then supply just enough %x’s to walk to this place followed by a %s. Many clever tricks are
possible, and the details are not terribly important for our purposes.) Thus, an attacker can exploit
a format string vulnerability to learn passwords, cryptographic keys, or other secrets stored in the
victim’s address space.

• The attacker can write any value to any address in the victim’s memory. (Use %n and many tricks;
the details are beyond the scope of this lecture.) You might want to ponder how this could be used for
malicious code injection.

The bottom line: if your program has a format string bug, assume that the attacker can learn all secrets stored
in memory, and assume that the attacker can take control of your program.

4 Integer conversion vulnerabilities
What’s wrong with this code?

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large: bad dog, no cookie for you!");
return;

}
memcpy(buf, p, len);

}

Here’s a hint. The prototype for memcpy() is:

CS 161, Spring 2010, Notes 1/22 5



void *memcpy(void *dest, const void *src, size_t n);

And the definition of size_t is:

typedef unsigned int size_t;

Do you see the bug now? If the attacker provides a negative value for len, the if statement won’t notice
anything wrong, and memcpy() will be executed with a negative third argument. C will cast this negative
value to an unsigned int and it will become a very large positive integer. Thus memcpy() will copy a
huge amount of memory into buf, overflowing the buffer.

Note that the C compiler won’t warn about the type mismatch between signed int and unsigned
int; it silently inserts an implicit cast. This kind of bug can be hard to spot. The above example is
particularly nasty, because on the surface it appears that the programmer has applied the correct bounds
checks, but they are flawed.

Here is another example. What’s wrong with this code?

void vulnerable() {
size_t len;
char *buf;

len = read_int_from_network();
buf = malloc(len+5);
read(fd, buf, len);
...

}

This code seems to avoid buffer overflow problems, (indeed, it allocates 5 more bytes than necessary).
But, there is a subtle problem: len+5 can wrap around if len is too large. For instance, if len =
0xFFFFFFFF, then the value of len+5 is 4 (on 32-bit platforms). In this case, the code allocates a 4-byte
buffer and then writes a lot more than 4 bytes into it: a classic buffer overflow. You have to know the
semantics of your programming language very well to avoid all the pitfalls.

5 Memory safety
Buffer overflow, format string, and the other examples above are examples of memory safety bugs: cases
where an attacker can read or write beyond the valid range of memory regions. Other examples of memory
safety violations include using a dangling pointer (a pointer into a memory region that has been freed and
is no longer valid) and double-free bugs (where a dynamically allocated object is explicitly freed multiple
times). C and C++ rely upon the programmer to preserve memory safety, but bugs in the code can lead to
violations of memory safety. History has taught us that memory safety violations often enable malicious
code injection and other kinds of attacks.

Some modern languages are designed to be intrinsically memory-safe, no matter what the programmer does.
Java is one example. Thus, memory-safe languages eliminate the opportunity for one kind of programming
mistake that has been known to cause serious security problems.

We’ve only scratched the surface of implementation vulnerabilities. If this makes you a bit more cautious
when you write code, then good! In future lectures well discuss how to prevent (or reduce the likelihood) of
these types of flaws and to improve the odds of surviving any flaws that do creep in.

CS 161, Spring 2010, Notes 1/22 6


