
CS 161 Computer Security
Spring 2010 Paxson/Wagner Notes 1/25

Defending Against Memory-Safety Vulnerabilities
Last lecture, we saw a class of attacks on programs, based upon exploiting memory-safety violations. This
lecture, let’s look at some techniques available to defend against memory-safety vulnerabilities. There are
at least five:

• Secure coding practices. We can adopt a disciplined style of programming that avoids these bugs.

• Better languages/libraries. We can adopt languages or libraries that make such mistakes harder to
commit.

• Runtime checking. We can have our compiler (or other tools) automatically inject runtime checks
everywhere they might be needed to detect and prevent exploitation of memory-safety bugs, so that if
our code does have a memory-safety bug, it won’t be exploitable by attackers.

• Static analysis. We can use a compiler (or a special tool) to scan the source code and identify potential
memory-safety bugs in the code, and then task developers with fixing those bugs.

• Testing. We can applying testing techniques to try to detect memory-safety bugs in the code, so that
we can fix them before the software ships to our customers.

Many of these techniques can be applied to all kinds of security bugs, but for concreteness, let’s explore how
they can be applied to protect against memory-safety vulnerabilities.

1 Secure Coding Practices
In general, before performing any potentially unsafe operation, we can write some code to check (at runtime)
whether the operation is safe to perform and abort if not. For instance, instead of

char digit_to_char(int i) { // BAD
char convert[] = "0123456789";
return convert[i];

}

we can write

CS 161, Spring 2010, Notes 1/25 1

char digit_to_char(int i) { // BETTER
char convert[] = "0123456789";
if (i < 0 || i > 9)

return "?"; // or, call exit()
return convert[i];

}

This code ensures that the array access will be within bounds. Similarly, when calling library functions, we
can use a library function that incorporates these kinds of checks, rather than one that does not. Instead of

char buf[512];
strcpy(buf, src); // BAD

we can write

char buf[512];
strlcpy(buf, src, sizeof buf); // BETTER

The latter is better, because strlcpy(d,s,n) takes care to avoid writing more than n bytes into the
buffer d. As another example, instead of

char buf[512];
sprintf(buf, src); // BAD

we can write

char buf[512];
snprintf(buf, sizeof buf, src); // BETTER

Instead of using gets(), we can use fgets(). And so on.

In general, we can check (or otherwise ensure) that array indices are in-bounds before using them, that
pointers are non-null and in-bounds before dereferencing them, that integer addition and multiplication
won’t overflow or wrap around before performing the operation, that integer subtraction won’t underflow
before performing it, that objects haven’t already been de-allocated before freeing them, and that memory
is initialized before being used.

We can also follow defensive programming practices. Defensive programming is like defensive driving: the
idea is to avoid depending on anyone else around you, so that if anyone else does something unexpected,
you won’t crash. Defensive programming is about surviving unexpected behavior by other code, rather than
by other drivers, but otherwise the principle is similar.

Defensive programming means that each module takes responsibility for checking the validity of all inputs
sent to it. Even if you “know” that your callers will never send you a NULL pointer, you check for NULL
anyway, just in case, because sometimes what you “know” isn’t actually true, and even if it is true today, it
might not be true tomorrow as the code evolves. Defensive programming is about minimizing trust in the
other components your code interacts with, so that the program fails gracefully if one of your assumptions
turns out to be incorrect. It’s usually better to throw an exception or even stop the program than to allow
a malicious code injection attack to succeed. Don’t write fragile code; strive for robustness. Defensive

CS 161, Spring 2010, Notes 1/25 2

programming might lead to duplicating some checks or introducing some unnecessary checks, but this may
be a price worth paying for reducing the likelihood of catastrophic security vulnerabilities.

It can also be helpful to perform code reviews, where one programmer reviews the code written by another
programmer to ensure (among other things) that the code follows secure code practices. For instance, some
companies have a requirement that all code be reviewed by another programmer before being checked in.
To help code reviewers (and yourself), a good principle is to organize your code so that it is obviously
correct. If the correctness of your code would not be obvious to a reviewer, rewrite it until its correctness is
self-evident. As the great programmer Brian Kernighan once wrote:

Debugging is twice as hard as writing the code in the first place. Therefore, if you write the
code as cleverly as possible, you are, by definition, not smart enough to debug it.

In the case of avoiding memory-safety bugs, code should be rewritten until it is self-evident that it never
performs any out-of-bounds memory access, for instance by introducing explicit runtime checks before any
questionable memory access.

One potential issue with relying solely upon secure coding practices is that we are still relying upon pro-
grammers to never make a mistake. Programmers are human, and so errors are inevitable. The hope is that
secure coding practices can reduce the frequency of such errors and can make them easier to spot in a code
review or debugging session. Also, static analysis tools (see below) may be able to help detect deviations
from secure coding practices, further reducing the incidence of such errors.

Many secure coding practices have a strong overlap with good software engineering principles, but the
demands of security arguably place a heavier burden on programmers. In security applications, we must
eliminate all security-relevant bugs, no matter how unlikely they are to be triggered in normal execution,
because we are facing an intelligent adversary who will gladly interact with our code in abnormal ways if
there is any profit in doing so. Software reliability normally focuses primarily on those bugs that are most
likely to happen; bugs that only come up under obscure conditions might be ignored if reliability is the
goal, but they cannot be ignored when security is the goal. Dealing with malice is harder than dealing with
mischance.

2 Better Languages and Libraries
Languages and libraries can help avoid memory-safety vulnerabilities by eliminating the opportunity for
programmer mistakes. For instance, Java performs automatic bounds-checking on every array access, so
programmer error cannot lead to an array bounds violation. Also, Java provides a String class with methods
for many common string operations. Importantly, every method on String is memory-safe: the method itself
performs all necessary runtime checks and resizes all buffers as needed to ensure there is enough space for
strings. Similarly, C++ provides a safe string class; using these libraries, instead of C’s standard library,
reduces the likelihood of buffer overflow bugs in string manipulation code.

3 Runtime Checks
Compilers and other tools can reduce the burden on programmers by automatically introducing runtime
checks at every potentially unsafe operation, so that programmers do not have to do so explicitly. For
instance, there has been a great deal of research on augmenting C compilers so they automatically emit a
bounds check at every array or pointer access.

CS 161, Spring 2010, Notes 1/25 3

One challenge is that automatic bounds-checking for C/C++ has a non-trivial performance overhead. Even
after decades of research, the best techniques still slow down computationally-intensive code by 10%-150%
or so, though the good news is that for I/O-bound code the overheads can be smaller1. Because many
security-critical network servers are I/O-bound, automatic bounds-checking may be feasible for some C/C++
programs. The reason that bounds-checking is expensive for C is that one must bounds-check every pointer
access, which adds several instructions for the check for each instruction that accesses a pointer, and C
programs use pointers frequently. Also, to enable such checks, pointers have to carry information about
their bounds, which adds overhead for the necessary book-keeping.

Another potential issue with automatic bounds-checking compilers for C/C++ has to do with legacy code.
First, the source code of the program has to be available, so that the program can be re-compiled using a
bounds-checking compiler. Second, it can be difficult to mix code compiled with bounds-checking enabled
with libraries or legacy code not compiled in that way. To check the bounds on a pointer p, we need some
way to know the start and end of the memory region that p points into, which requires either changing the
memory representation of pointers (so that they are an address, a base, and an upper bound) or introducing
extra data structures. Either way, this poses challenges when code compiled in this way interacts with code
compiled by an older compiler.

There are other techniques that attempt to make it harder to exploit any memory-safety bugs that may
existing the code. You might learn about some of them in discussion section2.

4 Static Analysis
Static analysis is a technique for scanning source code to try to automatically detect potential bugs. You
can think of static analysis as runtime checks, performed at compile time: the static analysis tool attempts
to predict whether there exists any program execution under which a runtime check would fail, and if it
finds any, it warns the programmer. Sophisticated techniques are needed, and those techniques are beyond
the scope of this class, but they build on ideas from the compilers and programming language literature for
automatic program analysis (e.g., ideas initially developed for compiler optimization).

The advantage of static analysis is that it can detect bugs proactively, at development time, so that they can
be fixed before the code has been shipped. Bugs in deployed code are expensive, not only because customers
don’t like it when they get hacked due to a bug in your code, but also because fixes require extensive testing
to ensure that the fix doesn’t make things worse. Generally speaking, the earlier a bug is found, the cheaper
it can be to fix, which makes static analysis tools attractive.

One challenge with static analysis tools is that they make errors. This is fundamental: detecting security
bugs can be shown to be undecidable (like the halting problem), so it follows that any static analysis tool
will either miss some bugs (false negatives), or falsely warn about code that is correct (false positives), or
both. In practice, the effectiveness of a static analysis tool is determined by its false negative rate and false
positive rate; these two can often be traded off against each other. At one extreme are verification tools,
which are guaranteed to be free of false negatives: if your code does not trigger any warnings, then it is
guaranteed to be free of bugs (at least, of the sort of bugs that the tool attempts to detect). In practice, most
developers accept a significant rate of false negatives in exchange for finding some relevant bugs, without
too many false positives.

1If you’re interested in learning more, you can read a recent research paper on this subject at http://www.usenix.org/
events/sec09/tech/full_papers/akritidis.pdf.

2For those interested in reading more, you can read about ASLR and the NX bit.

CS 161, Spring 2010, Notes 1/25 4

5 Testing
Another way to find security bugs proactively is by testing your code. A challenge with testing for security,
as opposed for functionality, is that security is a negative property: for security, we want to prove that nothing
bad happens, even in unusual circumstances; whereas standard testing focuses on ensuring that something
good does happen, under normal circumstances. It is a lot easier to define test cases that reflect normal,
expected inputs and check that the desired behavior does occur, then to define test cases that represent the
kinds of unusual inputs an attacker might provide or to detect things that are not supposed to happen.

Generally, testing for security has two aspect:

1. Test generation. We need to find a way to generate test cases, so that we can run the program on those
test cases.

2. Bug detection. We need a way to detect whether a particular test case revealed a bug in the program.

Fuzz testing is one simple form of security testing. Fuzz testing involves testing the program with random
inputs and seeing if the program exhibits any sign of failure. Generally, the bug detection strategy is to check
whether the program crashes (or throws an unexpected exception). For greater bug detection power, we can
enable runtime checks (e.g., automatic array bounds-checking) and see whether any of the test cases triggers
a failure of some runtime check. There are three different approaches to test generation that are commonly
taken, during fuzz testing:

• Random inputs. Construct a random input file, and run the program on that input. The file is con-
structed by choosing a totally random sequence of bytes, with no structure.

• Mutated inputs. Start with a valid input file, randomly modify a few bits in the file, and run the
program on the mutated input.

• Structure-driven input generation. Taking into account the intended format of the input, devise a
program to independently “fuzz” each field of the input file. For instance, if we know that one part
of the input is a string, generate random strings (of random lengths, with random characters, some
of them with % signs to try to trigger format string bugs, some with funny Unicode characters, etc.).
If another part of the input is a length, try random integers, try a very small number, try a very large
number, try a negative number (or an integer whose binary representation has its high bit set).

One shortcoming of purely random inputs is that, if the input has a structured format, then it is likely that a
random input file will not have the proper format and thus will be quickly rejected by the program, leaving
much of the code uncovered and untested. The other two approaches address this problem. Generally
speaking, mutating a corpus of valid files is easier than writing a test generation suite customized to the
particular input format under consideration, but may be less effective.

Usually, fuzz testing involves generating many inputs: e.g., hundreds of thousands or millions. What it
sacrifices in sophistication, it makes up for in quantity. Fuzz testing is popular in industry today because it is
cheap, easy to apply, and somewhat effective at finding some kinds of bugs (more effective than you would
think it has any right to be)3

3For those interested in learning more, I can recommend the following set of slides: http://toorcon.org/2007/
talks/60/real_world_fuzzing.pdf. If you like to try things out, you could check out zzuf, a very easy to
use mutation fuzzer for Linux: http://caca.zoy.org/wiki/zzuf. For instance, on Linux you can have some
fun with a command like zzuf -v -s 1:1000 valgrind -q --leak-check=no --error-exitcode=1 unzip
-o foo.zip; look for error messages from Valgrind, prefixed with ==NNNNN==.

CS 161, Spring 2010, Notes 1/25 5

6 Reasoning About Code
Often functions make certain assumptions about their arguments, and it is the caller’s responsibility to make
sure those assumptions are valid. These are often called preconditions. A precondition for f() is an
assertion (a logical proposition) that must hold at input to f(). The function f() is supposed to behave
correctly and produce meaningful output as long as its preconditions are met. If any precondition is not met,
all bets are off. Therefore, the caller must be sure to call f() in a way that will make these preconditions
true. In short, a precondition imposes an obligation on the caller, and the callee may freely assume that the
obligation has been met.

Here is a simple example of a function with a precondition:

/* requires: p != NULL */
int deref(int *p) {

return *p;
}

It is not safe to dereference a null pointer; therefore, we impose a precondition that must be met by the caller
of deref(). The precondition is that p 6= NULL must hold at the entrance to deref(). As long as all
callers ensure this precondition, it will be safe to call deref()4.

Assertions may be combined using logical connectives (and, or, implication). It is often also useful to allow
existentially (∃) and universally (∀) quantified logical formulas. For instance:

/* requires:
a != NULL &&
size(a) >= n &&
for all j in 0..n-1, a[j] != NULL */

int sum(int *a[], size_t n) {
int total = 0;
size_t i;
for (i=0; i<n; i++)

total += *(a[i]);
return total;

}

The third part of the precondition might be expressed in mathematical notation as something like

∀j . (0≤ j< n) =⇒ a[j] 6= NULL.

If you are comfortable with formal logic, you can write your assertions in this way, and this will help you be
precise. However, it is not necessary to be so formal. The primary purpose of preconditions is to help you
think explicitly about precisely what assumptions you are making, and to communicate those requirements
to other programmers and to yourself.

Postconditions are also useful. A postcondition for f() is an assertion that is claimed to hold when f() re-
turns. The function f() has the obligation of ensuring that this condition is true when it returns. Meanwhile,
the caller may freely assume that the postcondition has been established by f(). For example:

4Technically speaking, we also need to know that p is a valid pointer: i.e., it is safe to dereference. To be strictly correct,
we ought to add that to the precondition. However, I will follow the convention that every pointer-typed variable is implicitly
assumed to have, as an invariant condition, that it is either NULL or valid. This convention simplifies and shortens preconditions,
postconditions, and invariants. I hope that this convention is not confusing.

CS 161, Spring 2010, Notes 1/25 6

/* ensures: retval != NULL */
void *mymalloc(size_t n) {

void *p = malloc(n);
if (!p) {

perror("Out of memory");
exit(1);

}
return p;

}

When you are writing code for a function, you should first write down its preconditions and postconditions.
This specifies what obligations the caller has and what the caller is entitled to rely upon. Then, verify that,
no matter how the function is called, as long as the precondition is met at entrance to the function, then the
postcondition will be guaranteed to hold upon return from the function. You should prove that this is always
true, for all inputs, no matter what the caller does. If you can find even one case where the caller provides
some inputs that meet the precondition, but the postcondition is not met, then you have found a bug in either
the specification (the preconditions or postconditions) or the implementation (the code of the function you
just wrote), and you’d better fix whichever is wrong.

How do we prove that the precondition implies the postcondition? The basic idea is to try to write down
a precondition and postcondition for every line of code, and then do the very same sort of reasoning at the
level of a single line of code. Each statement’s postcondition must match (or imply) the precondition of
any statement that follows it. Thus, at every point between two statements, you write down an invariant
that should be true any time execution reaches that point. The invariant is a postcondition for the preceding
statement, and a precondition for the next statement.

It is pretty straightforward to tell whether a statement in isolation meets its pre- and post-conditions. For
instance, a valid postcondition for the statement “v=0;” would be v = 0 (no matter what the precondition
is). Or, if the precondition for the statement “v=v+1;” is v≥ 5, then a valid postcondition would be v≥ 6.
As another example, if the precondition for the statement “v=v+1;” is w ≤ 100, then w ≤ 100 is also a
valid postcondition (assuming v and w do not alias).

This leads to a very useful concept, that of loop invariants. A loop invariant is an assertion that is true at the
entrance to the loop, on any path through the code. The loop invariant has to be true before every iteration
to the loop. To verify that a condition really is a valid loop invariant for the loop, you treat the condition
as both a pre-condition and a post-condition for the loop body and you use a proof by induction to prove it
valid.

Let’s try an example. Here is some code that prints out the decimal representation of an integer, but reversed
(least significant digit first):

/* requires: n >= 0 */
void binpr(int n) {

char digits[] = "0123456789";
while (n != 0) {

int d = n % 10;
putchar(digits[d]);
n = n / 10;

}
putchar(’0’);

}

CS 161, Spring 2010, Notes 1/25 7

A prerequisite is that the input n must be non-negative for this function to work correctly, hence the precon-
dition. Suppose we want to prove that the array dereference (digits[d]) never goes outside the bounds
of the array. We’ll annotate the code with invariants (in blue):

/* requires: n >= 0 */
void binpr(int n) {

char digits[] = "0123456789"; /* n >= 0 */
while (n != 0) { /* n > 0 */

int d = n % 10; /* 0 <= d && d < 10 && n > 0*/
putchar(digits[d]); /* 0 <= d && d < 10 && n > 0*/
n = n / 10; /* 0 <= d && d < 10 && n >= 0*/

}
putchar(’0’);

}

How do we verify that the invariants are correct? This might look pretty complicated, but don’t get
discouraged—it’s actually pretty easy if you just take the time to look at each step. For instance, the
function’s precondition implies the invariant after the first line of the function body. Also, we can prove
by induction that n> 0 is a loop invariant: we know that n≥ 0 holds at the entry to the loop and at the end
of the prior iteration; if we enter the loop, then we also know n 6= 0; and these two, taken together, imply
n> 0. Tracing forward, we can see that if n> 0 holds at the beginning of the loop body, then n≥ 0 holds at
the end of the loop body. The validity of the loop invariant follows by induction on the number of iterations
of the loop. The conclusion is that the array accesses in binpr() will always be in-bounds, as long as
binpr()’s precondition is met.

To give you some more practice, we’ll show another example implementation of binpr(), this time using
recursion. Here goes:

/* requires: n >= 0 */
void binpr(int n) {

char digits[] = "0123456789";
if (n == 0) {

putchar(’0’);
return;

}
int d = n % 10;
putchar(digits[d]);
int m = n / 10;
binpr(m);

}

Do you see how to prove that the array accesses are always valid? Let’s do it:

CS 161, Spring 2010, Notes 1/25 8

/* requires: n >= 0 */
void binpr(int n) {

char digits[] = "0123456789";
if (n == 0) {

putchar(’0’);
return;

} /* n > 0 */
int d = n % 10; /* n > 0 && 0 <= d && d < 10 */
putchar(digits[d]); /* n > 0 && 0 <= d && d < 10 */
int m = n / 10; /* n > 0 && 0 <= d && d < 10 && m >= 0 */
binpr(m);

}

Before the recursive call to binpr(), we know that m≥ 0 (by the annotations). That’s very good, because
it means the precondition is met when making the recursive call. As a result, we’re entitled to conclude
that binpr(m) is safe (does not perform any out-of-bounds array access). Also, we can easily see that the
expression digits[d] is safe, by virtue of the annotations we’ve filled in. It follows that, as long as the
precondition to binpr() is respected, the function is memory-safe.

In general, any time we see a function call, we have to verify that its precondition will be met. Then we are
entitled to conclude that its postcondition holds, and to use this fact in our reasoning.

If we annotate every function in the program with pre- and post-conditions, this allows modular reasoning.
This means that I can verify function f() by looking only at the code of f() and the annotations on every
function that f() calls—but I do not need to look at the code of any other functions, and I do not need
to know everything that f() calls transitively. Reasoning about a function then becomes an almost purely
local activity. We don’t have to think hard about what the rest of the program is doing.

Preconditions and postconditions also serve as useful documentation. If Bob writes down pre- and post-
conditions for the module he has built, and Alice wants to invoke Bob’s code, she only has to look at the
pre- and post-conditions—she does not need to look at or understand Bob’s code. This is a useful way to
coordinate activity between multiple programmers: each module is assigned to one programmer, and the
pre- and post-conditions become a kind of contract between caller and callee. For instance, if Alice knows
she is going to have to invoke Bob’s code, then when the system is designed Alice and Bob might negotate
the interface between their code and the contract on who is responsible for what.

There is one more major use for this kind of reasoning. If we want to avoid security holes and program
crashes, there are usually some implicit requirements the code must meet: for instance, it must not divide
by zero, it must not make out-of-bounds accesses to memory, it must not dereference null pointers, and so
on. We can then try to prove that our code meets these requirements using the same style of reasoning. For
instance, any time a pointer is dereferenced, there is an implicit precondition that the pointer is non-null and
in-bounds.

Here is an example of using this kind of reasoning to prove that array accesses are within bounds:

CS 161, Spring 2010, Notes 1/25 9

/* requires: a != NULL && size(a) >= n */
int sum(int a[], size_t n) {

int total = 0;
for (size_t i=0; i<n; i++)

/* Loop invariant: 0 <= i && i < n && n <= size(a) */
total += a[i];

return total;
}

In this example, the loop invariant is straightforward to establish. It is true at the entrance to the first iteration
(since during the first iteration, i= 0), and it is true at the entrance to every subsequent iteration (since the
loop termination condition ensures i < n, and since i only increases, and since n and size(a) never
change), so the array access a[i] is always within bounds.

Of course, in general, proving the absence of buffer overruns might be much more difficult, depending on
how the code is structured. However, if your code is structured in such a way that it is hard to provide a
proof of no buffer overruns, perhaps you may wish to consider re-structuring the code to make the absence
of buffer overruns more evident.

This might all look awfully tedious. The good news is that it does get a lot easier over time. With practice,
you won’t need to down detailed invariants before every statement; there is so much redundancy that you’ll
be able to derive them in your head easily. In practice, you might write down the preconditions and postcon-
ditions and a loop invariant for every loop, and that will be enough to confirm that all is well. The bad news
is that, even with practice, reasoning about your code still does take time and energy—however, it seems to
be worth it for code that needs to be highly secure.

While we have presented this in a fairly formal way, you can do the same kind of reasoning without bothering
with the formal notation. Also, you can often omit the obvious parts of the invariants and write down only
the parts that seem most important. Sometimes, it is helpful to think about data structures and code in terms
of the invariants it ought to satisfy first, and only then write the code.

This kind of reasoning can be formalized more precisely using the tools of mathematical logic. In fact, there
has been a lot of research into tools that use automated theorem provers to try to mathematically prove the
validity of a set of alleged pre- and post-conditions (or even to help infer such invariants). You could take a
whole course on the topic, but for reasons of time, we won’t go any further in CS161. Your basic intuition
should be enough to handle most cases on your own.

By the way, you may have noticed how useful it is to be able to “speak mathematics” fluently. Now you
know one reason why we make you take Math 55 or CS 70 as part of your computer science education.

CS 161, Spring 2010, Notes 1/25 10

7 Optional: More on Defensive Programming
For those who are interested in secure coding and defensive programming, here is a little bit of additional
information on the concept (purely optional). The goal of defensive programming is to ensure that your
module will remain robust even if all other modules that interact with it misbehave. The general strategy
is to assume that an attacker is in control of the inputs to your module, and make sure that nothing terrible
happens.

The simplest situation is where we are writing a module M that provides functionality to a single client.
Then M should strive to provide useful responses as long as the client provides valid inputs. If the client
provides an invalid input, then M is no longer under any obligation to provide useful output; however, M
must still protect itself (and the rest of the system) from being subverted by malicious inputs.

A very simple example:

char charAt(char *str, int index) {
return str[index];

}

This function is fragile. First, charAt(NULL, any)will cause the program to crash. Second, charAt(s,
i) can create a buffer overrun situation if i is out-of-bounds (too small or too large) for the string. Neither
can be easily fixed without changing the function interface.

Another made-up example:

char *double(char *str) {
size_t len = strlen(str);
char *p = malloc(2*len+1);
strcpy(p, str);
strcpy(p+len, str);
return p;

}

This function could potentially be criticized on several grounds:

• double(NULL) will cause a crash. Fix: test whether str is a null pointer, and if so, return null.

• The return value of malloc() is not checked. In an out-of-memory situation, malloc()will return
a null pointer and the call to strcpy() will cause the program to crash. Fix: test the return value of
malloc().

• If str is very long, then the expression 2*len+1 will overflow, potentially causing a buffer overrun.
For instance, if the input string is 231 bytes long, then on a 32-bit machine we will allocate only 1
byte, and the strcpy will immediately trigger a heap overrun.

A slightly trickier example: Consider a Java sort routine, which accepts an array of objects that implement
the interface Comparable and sorts them. This means that each such object has to implement the method
compareTo(), and x.compareTo(y) must return a negative, zero, or positive integer, according to
whether x is less, equal, or greater than y in their class’s natural ordering (e.g., strings might use lexico-
graphic ordering, say). Implementing a defensive sort routine is actually fairly tricky, because a malicious

CS 161, Spring 2010, Notes 1/25 11

client might supply objects whose compareTo() method behaves unexpectedly. For instance, calling
x.compareTo(y) twice might yield two different results (if x or y are malicious or misbehaving). Or,
we might have x.compareTo(y) == 1, y.compareTo(z) == 1, and z.compareTo(x) ==
1, which is nonsensical. If we’re not careful, the sort routine could easily go into an infinite loop or worse.

Here is some general advice:

• Check for error conditions. Always check the return values of all calls (assuming this is how they
indicate errors). In languages with exceptions, think carefully about whether the exception should be
handled locally or should be propagated and exposed to the caller. Check error paths very carefully:
error paths are often poorly tested, so they often contain memory leaks and other bugs.

What do you do if you detect an error condition? Generally speaking, for errors that are expected and
intended to be recoverable, you may wish to recover. However, unexpected errors are by their very
nature more difficult to recover from. In many applications, it is always safe to abort processing and
terminate abruptly if an error condition is signalled; fail-stop behavior may be easier to get right.

• Don’t crash or enter infinite loops. Don’t corrupt memory. Generally, you will want to verify that, no
matter what input you receive (no matter how peculiar), the program will not terminate abnormally,
enter an infinite loop, corrupt its internal state, or allow its flow of control to be hijacked by an attacker.
Be sure that these failures cannot happen. Trust no one. If there are any inputs to this function, validate
its inputs explicitly to avoid these cases (even if you are not aware of any caller that could provide
such bad inputs).

If availability is important, you may wish to avoid leaking memory or other resources, since enough
memory is leaked the program might cease to operate usefully. You may also want to defend against
algorithm denial-of-service attacks: if the attacker can supply inputs that lead to worst-case perfor-
mance that is far worse than the normal case, this can be dangerous. For instance, if your program that
uses a hashtable with O(1) expected time per lookup, but O(n) worst-case time, the attacker might
send packets that trigger the O(n) worst-case behavior and cause the program to freeze as it enters a
protracted computation.

• Beware of integer overflow. Integer overflow often violates the programmer’s mental model and leads
to unexpected—and hence often undesired—behavior. You might wish to verify that integer overflow
is impossible.

• Check exception-safety of the code. In languages with exceptions, there are usually two kinds of
exceptions: those explicitly thrown by a programmer, and those implicitly thrown by the platform
if some runtime error is detected. For instance, a null pointer dereference, a division by zero, an
invalid cast, or an out-of-bounds array reference each trigger a runtime exception. Generally, you
should verify that your code will not throw a runtime exception under any circumstance, because such
exceptions are usually indications of unexpected behavior or program bugs. Less restrictively, one
might check that all such exceptions are handled and will propagate across module boundaries.

A famous example of a failure to verify exception-safety comes from the Ariane rocket. The Ariane
4 contained flight control software written in Ada. When the more powerful version, Ariane 5, was
developed, the same software was reused. Unfortunately, when the Ariane 5 was launched, it blew up
shortly after launch. The cause was discovered to be an uncaught integer overflow exception, which
caused the software to terminate abruptly. A certain 16-bit register held the horizontal velocity of
the flight trajectory. On the Ariane 4, it had been verified that the range of physically possible flight
trajectories could not overflow this variable, so there was no need to install an exception handler to
catch such an exception. However, the Ariane 5’s rocket engine was more powerful, causing a larger

CS 161, Spring 2010, Notes 1/25 12

horizontal velocity to be stored into the register and triggering an overflow exception that crashed
the on-board computers. The assumption made during the construction of the Ariane 4 was never
re-validated when the software was re-used in the Ariane 5, causing losses of around $500 million.

How does defensive programming relate to the use of preconditions? Of course, whenever we want to make
some assumption about the calling context, we can either express this as a precondition and leave it to the
caller to ensure it is true, or we can explicitly check for ourselves that the condition holds (and abort if it
does not). How should we decide between these two strategies? Perhaps the most sensible approach is to
use preconditions to express constraints that honest clients are expected to follow. So long as the client
meets the documented preconditions (whether formal or informal), then the module is obligated to return
correct and useful results to the client. If the client departs from the documented contract, then the module
is no longer under any obligation to return useful results to that client, but it still must protect itself and other
clients. Thus, for interfaces exposed to clients, we might (a) use documented preconditions to express the
intended contract and (b) use explicit checking for anything that could corrupt our internal state, cause us
to crash, or disrupt other clients. For internal helper functions that can only be invoked by code in the same
module, we might not worry about the threat of being invoked with malicious inputs, and we could freely
choose between implicit checking (preconditions) and explicit checking.

8 Optional: Security Throughout the Software Development
Process

For those who are interested in security, as it applies throughout the software development lifecycle, here is
a little bit of additional information on the concept (purely optional).

Generally speaking, we should think of security is an ongoing process. For best results, it helps to integrate
security into all phases of the system development lifecycle: requirements analysis, design, implementation,
testing, quality assurance, bugfixing, and maintenance. Security is not a feature or checklist item that can be
bolted-on after the software has been developed.

• Test code thoroughly before deployment. Testing can help eliminate bugs. It is worth putting some
effort into developing test cases that might trigger security bugs or expose inadequate robustness. Test
corner cases: unusually long inputs, strings containing unusual 8-bit characters, strings containing
format specifiers (e.g., %s) and newlines, and other unexpected values. Manuals and documentation
can provide a helpful source of potential test cases. If the manual says that the input must or should
be of a particular form, try constructing test cases that are not of that form.

Unit tests are particularly valuable at checking whether you are doing a good job of defensive pro-
gramming. Try inputs that stress boundary conditions (integers are 0, 1, −1, 231− 1, −231 are fun
to try). If the routine operates on pointers, try inputs with unusual pointer aliasing or pointing to
overlapping memory regions.

Automate your tests, so that they can be applied at the push of a button. Run them nightly.

• Use code reviews to cross-check each other. Good security programmers enlist others to review their
code, because they realize that they are fallible. Having someone else review your code is usually
much more effective than reviewing your own code. Bringing in another perspective often helps to
find defects that the original programmer would never found. For instance, it is easy to make implicit
assumptions (e.g., about the threat model) without realizing it. The original programmer is likely
to make the same erroneous assumption when reviewing her own code as when she wrote it, while

CS 161, Spring 2010, Notes 1/25 13

someone else may spot the error immediately. Knowing that someone else will review your code also
helps keep you honest and motivates you to avoid dangerous shortcuts, because most people prefer
not to be embarassed in front of their peers.

• Evaluate the cause of all bugs found. What should you do when you find a security bug? Fix it,
obviously—but don’t stop there.

First, generate a regression test that triggers the security hole. Add it to your regression test suite so
that if the bug is ever re-introduced you will discover it very quickly.

Second, check whether there are other bugs of a similar form elsewhere in the codebase. If you find
three or four bugs of the same type, it is good bet that there are more lurking, waiting to be found.
Document the pitfall or coding pattern that causes this bug, so that other developers can learn from it.

Third, evaluate what you could be doing differently to prevent similar bugs from being introduced in
the future. Does the bug reveal a misfeature in your API? If so, fix the API to prevent any further
incidence of such bugs.

You may also wish to investigate the root cause of such bugs periodically. Are there adequate re-
sources for security? Is security adequately prioritized? Was the design well-chosen? Are you using
the right tools for the job? Are deadlines too tight and programmers feeling too rushed to put adequate
care into security concerns? Does it indicate some weakness in the process you use? Do engineers
need more training on security? Should you be doing more testing, more code reviews, something
else? Even if you fix each security bug as they occur, if you don’t fix the root cause that creates the
conditions for such bugs to be introduced, then you will continue to suffer from security bugs.

CS 161, Spring 2010, Notes 1/25 14

