
CS 161 Computer Security
Spring 2010 Paxson/Wagner Discussion 9

1. Authentication on the web

(a) What are some problems with password authentication?

(b) List pros and cons for each of the following authentication mechanism (relative to passwords).

i. You have to answer n personal knowledge questions. Examples of these include: “What is your
favorite color?” or “What is the name of your favorite baseball team?”.

ii. During password creation, you are presented with a grid of n (human) faces k times. For each grid,
you must select a face. Your password consists of the k faces that you choose. Authentication is
exactly like creation, but now the face you pick must match the one that you selected during
creation. The ordering of the faces within a grid is randomized.

iii. When you need to create your password, you are given a picture, and you must select n points
in the picture. Those points comprise your password. When it is time to authenticate, the server
sends you the picture and you pick the points that comprise your password.

Answer:

(a) Hard to remember passwords, hard to create unguessable passwords, tradeoff between memorability
and guessability, keystroke timing attacks, unsafe password storage (people write down passwords
sometimes or store them somewhere they shouldn’t be stored), password reuse.

(b) Alternate authentication mechanisms

i. Personal knowledge questions. Cons: Many questions don’t have enough entropy (e.g., there
are only a handful of favorite colors that people have). Facebook, etc. can reveal answers to
a lot of these questions (e.g., your favorite baseball team). Many answers are easily guessable.
Notable celebrity pwnage due to personal knowledge questions includes Sarah Palin, Paris Hilton.
People don’t always answer the same (e.g., maybe your favorite movie changes). Pros: Easier to
remember than passwords.

ii. Faces. Cons: Potentially less entropy than traditional passwords. Shoulder surfing (looking
over someone’s shoulder in order to learn someone’s password) is easy. Pros: Supposed to
be more usable. This paper from USENIX Security 2004 looked at the amount of entropy in
this scheme: On User Choice in Graphical Password Schemes by D. Davis, F. Monrose, and
M.K. Reiter. (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.94.5091&rep=rep1&type=pdf)

iii. Points in a picture. Cons: If the picture only has a few “hot spots,” the password is easily
guessable. If it has a lot of hot spots (or no spot is much hotter than another), then passwords
may not be as memorable. Pros: User doesn’t select the picture, so no password reuse, and
pictures can be strategically chosen by the server so that it only serves pictures that have a lot of
hot spots. Easier to remember than passwords. A 2005 paper from the Symposium On Usable Pri-
vacy and Security looked at the usability of graphical passwords: Authentication Using Graphical

CS 161, Spring 2010, Discussion 9 1



Passwords: Effects of Tolerance and Image Choice by S. Wiedenbeck, J. Waters, J-C Birget, A.
Brodskiy, and N. Memon. (http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.123.1346&rep=rep1&type=pdf) This 2007 paper from USENIX Security
looks at the issue of hot spots: Human-seeded attacks and exploiting hot-spots in graphical pass-
words by J. Thorpe and P.C. van Oorschot. (http://portal.acm.org/citation.cfm?
id-1362911)

2. Capabilities

(a) In lecture you learned about Access Control Lists for managing users’ access permissions to shared
files. An alternate approach to managing access to resources is the use of capabilities. A capability is
an unforgeable pointer to a system resource. In a capability-based system, the capability to a resource
both designates the resource and grants authority to access that resource. A typical real-world example
of a capability is your car keys. The keys both designate the resource (your car keys only work for
your car) and grant access rights (anyone in possession of the keys can start your car).1 Capabilities
are transferrable: just like with your car keys, any entity with a capability for a resource can pass that
capability on to any other entity.
Programs written for systems that use ACLs can be vulnerable to a confused deputy attack. A classic
example of this is a compiler program that writes the output of the compilation to a file specified by
the user and then writes billing information to the BILL file. The user does not have write permission
to the BILL file, but the compiler does. If the user specifies BILL as the output file, the compiler will
overwrite the contents of BILL with the output of the compilation. This occurs because the compiler
has authority to write both files, but the authority is not tied to its purpose or source. This is referred to
as ambient authority. Explain how capabilities can be used to avoid the problem of ambient authority.

Answer: If the system was purely capability-based then, instead of passing in the name of the output
file, the user would pass in a capability to the file it wants to use as the output file. Since capabilities
are unforgeable, the user can’t pass in a capability to a file unless that user has legitimate access to
that file. The compiler program is no longer plagued by the ambient authority problem. It will use its
capability for writing to the BILL file and the user’s capability for writing the output file.

(b) It is sometimes necessary to revoke a user’s permission to access a resource. With an ACL-based
system this is done by updating the ACL with the new permissions. However, with capabilities this
isn’t possible. Imagine Alice and Bob are using a capabilities-based OS. The system maintains a
mapping of 128-bit identifiers to system resources. The identifier is the capability for the resource.
When a process attempts to access a resource it must present its capability as part of the system call.
The OS will lookup the capability in its table and then grant access to the appropriate resource. Alice
has a capability that grants her read/write permission to a LOG file. She would like to give Bob this
capability, but she knows she will want to revoke it at some later date. What could Alice give Bob
that will give him the ability to read and write the LOG file now, but still allow her to revoke that
permission at some future date? You can introduce additional resources with trusted processing (that
is, each resource will correctly execute what you specify it should do) as long as the result retains the
basic properties that capabilities provide.

Answer: Alice can create a proxy process that has a capability for the LOG file. The proxy merely
forwards all writes to the LOG file. Alice then passes to Bob a capability for the proxy which he can

1Car keys are not a perfect example of capabilities. For one thing, there are ways to start your car even without posession of the
keys. A second problem with car keys is that it might be possible to forge a valid set of keys given only the car lock.

CS 161, Spring 2010, Discussion 9 2



use to write to the LOG file. When Alice wants to revoke Bob’s capability, she only has to change the
proxy so that it no longer forwards writes to the LOG. Bob is free to pass on his capability to anyone
he chooses, but since he is only passing on the capability to the proxy, any capabilities he passes on
will be revoked at the same time Bob’s capability is revoked.

(c) Web-based systems that use ACLs (e.g., username/password/cookies authentication) are also vulnera-
ble to confused deputy attacks (e.g., CSRF attacks). You saw in class how web-based email sites that
use cookie-based authentication also use capabilities to prevent CSRF attacks. When a user logs in,
the server passes an authentication cookie to the client. Whenever the client requests an HTML page
from the server, the server includes a random value in the HTML form of the web page. When the
user makes a request, say to delete an email, the request includes the random value from the web form.
The server checks that it is the correct random value for the client with the given authentication cookie
and, if it is correct, honors the request. Suppose the following URI will delete all the mail in a user’s
inbox: https://mymail.webby.com?action=del&folder=inbox/?token=A90..89
where A90..89 represents the random value sent by the server. If the random value is 64 bits long
and webmail.com has 250 million users, but only about 10 million users are logged in at any one
time, what is the attacker’s chance of success for a single CSRF attack? In other words, if one user
clicks on the link, what is the probability that the attack succeeds?

Answer: 1
264

(d) Now suppose webmail.com changes their system to use capability-based authentication instead of
username/password authentication. webmail.com associates with each user’s account a capability
that grants access to that account. Now the user does not need to provide a username and password,
they just need to provide the correct URI. For example, the URI
https://mymail.webmail.com?action=view&folder=inbox/?token=A90..89
will grant the requester permission to view the inbox. The random value A90..89 is a static value
associated with that user’s account. If the random value is 64 bits long, what is the attacker’s chance
of success for a single CSRF attack?

Answer: Roughly 228

264 . The attacker only has to guess one of the 250 million valid capabilities cur-
rently assigned to users.

3. Detection strategies Suppose you are building an Network Intrusion Detection System (NIDS) for the
corporate network you run. In particular, you are concerned about malicious modification or deletion of
files in the directory /var/secret/MacGuffin/.

(a) One method of detection is called “signature matching.” This involves looking for particular well-
defined patterns in traffic that are known to represent malicious activity. Give a couple of examples of
signatures you can use to detect these attacks. What are some limitations of this approach?

Answer: Example signatures:

i. Look for the string “/var/secret/MacGuffin” in requests
ii. Look for “rm -rf”

iii. Wait until a particular attack occurs. Afterwards, look for the same packets as occurred during
that attack.

Problems with this approach:

CS 161, Spring 2010, Discussion 9 3



i. It is prone to false positives as it lacks context. It could be that access to /var/secret/MacGuffin
occurs frequently for benign reasons, and without ensuing modifications. Similarly, users might
often use rm -rf to manipulate directories other than the one you’re observing.

ii. It can be prone to false negatives or evasion. For example, an interact attacker could issue
cd /var/secret; cd MacGuffin followed by rm -f -r . and easily evade detection.

iii. Note that if you literally only add matches based on known (= previously seen) attacks, then the
approach is purely reactive; if you’re looking for a threat unique to your site, you cannot inoculate
yourself from it until you have suffered it. On the other hand, (1) if the threat is one faced by other
sites, they might have written signatures for it after having experienced it, and (2) one can adapt
signature technology to write vulnerability signatures (signatures that match a known potential
problem, rather than a known specific attack), which can be proactive.

(b) Another approach is to search for behaviors. Instead of looking for known attacks, the detector might
use knowledge of the system to look for suspicious sets of actions. Give two examples of host-based
behavioral detection. Be specific as to how your example differs from signature matching that looks
for known attacks. What are some problems with this approach?

Answer: Examples:

i. Look for the removal of files in /var/secret/MacGuffin after multiple attempts at logging
in as “root”. Here, rather than looking for a specific attack we’re looking for a pattern associated
with likely-attack activity.

ii. Don’t even look for attacks; look for related suspicious activity indicative of a compromise. For
example, look for attempts at accessing and deleting log files over an SSH connection. This
approach can potentially detect a wide range of compromises during which the attacker obtains
login access to the target system.

Issues:

i. Requires lots of parsing in order to understand many protocols. This is potentially a lot of work.
ii. While potentially more general than signature matching, can still miss a wide range of attacks that

don’t happen to include (or for which the attacker consciously avoids including) the behavior for
which we monitor.

(c) Suppose now we aim to detect modifications to any files in /var/secret/MacGuffin using the
following procedure. Each night, we run a cron job that checksums all of the files in the directory using
a cryptographically strong hash like SHA256. We then compare the hashes against the previously
stored ones and alert on any differences. (This scheme is known as “Tripwire.”)
Discuss issues with false positives and false negatives.

Answer: False positives can occur any time that the files are changed for a legitimate purpose.
False negatives should not be a direct problem: due to the properties of a hash function like SHA256,
if an attacker makes any modification to a file, the hash will change; they will not be able to find any
alternative value for the file that yields the same hash.
However, if the attacker gains administrative privileges then they could modify the OS to return the old
content of the file whenever the nightly job runs; or modify the nightly job directly to always report
nothing has changed; or modify the stored hashes to reflect the new content of the file.

(d) Continuing the previous scenario, suppose the attacker was able to subvert the operating system. Can
you think of a procedure (which might be expensive in terms of labor) by which an operator could still
detect the modified files?

CS 161, Spring 2010, Discussion 9 4



Here’s one approach that has been used in practice. The hashes aren’t stored locally but instead on a
remote system (which prevents the attacker from tampering with them). When the operator wants to
check a file system, they shut down the suspect machine and remove the disk, mounting it on a separate
system (with a presumably trustworthy OS) for comparison. Alternatively, the operator could insert a
boot disk into the suspect machine and boot off of read-only media (assuming the attacker cannot alter
the low-level boot sequence) and use that alternative OS for the validation procedure.

CS 161, Spring 2010, Discussion 9 5


