
Denial-of-Service (DoS)

CS 161 - Computer Security
Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew
Finifter, Cynthia Sturton, Joel Weinberger
http://inst.eecs.berkeley.edu/~cs161/

Feb 22, 2010

Announcements

• Section 108 (Tu 2-3PM, TA: Joel) is being moved
from 70 Evans to 122 Barrows for the next three
weeks
– Will go back to 70 Evans on March 16

The Threat of Denial-of-Service

• Denial-of-Service (DoS, or “doss”): keeping
someone from using a computing service

• Two basic approaches available to an attacker:
– Deny service based on a program flaw

• E.g., supply an input that crashes a server
– Deny service based on resource exhaustion

• E.g., consume CPU, memory, disk, network

• How broad is this sort of threat?
– Very: huge attack surface

• We do though need to consider our threat model …
– What might motivate a DoS attack?

Motivations for DoS

• Showing off / entertainment / ego
• Competitive advantage

– Maybe commercial, maybe just to win
• Vendetta / denial-of-money
• Extortion
• Political statements
• Impair defenses
• Warfare

DoS Defense in General Terms
• Defending resources from exhaustion can be

really hard. Requires:
– Isolation mechanisms
– Reliable identification of different users

• Need to beware of asymmetries, where
attackers can consume victim resources with
little comparable effort
– Makes DoS easier to launch

• One dangerous form of asymmetry:
amplification
– Attacker leverages system’s structure to pump up

the load they induce on a resource

DoS & Operating Systems

• How could you DoS a multi-user Unix system on which
you have a login?
– #	
 rm	
 -­‐rf	
 /

• (if you have root - but then just “halt” works well!)
– char	
 buf[1024];

int	
 f	
 =	
 open("/tmp/junk");
while	
 (1)	
 write(f,	
 buf,	
 sizeof(buf));

• Gobble up all the disk space!
– while	
 (1)	
 fork();

• Create a zillion processes!
– Create zillions of files, keep opening, reading, writing, deleting

• Thrash the disk
– … doubtless many more

• Defenses?
– Isolate users / impose quotas

DoS & Networks

• How could you DoS a target’s Internet access?
– Send a zillion packets at them
– Internet lacks isolation between traffic of different

users!
• What resources does attacker need to pull this

off?
– At least as much sending capacity (“bandwidth”) as

the bottleneck link of the target’s Internet connection
• Attacker sends maximum-sized packets

– Or: overwhelm the rate at which the bottleneck
router can process packets

• Attacker sends minimum-sized packets! (in order to
maximize the packet arrival rate)

Defending Against Network DoS

• Suppose an attacker has access to a beefy
system with high-speed Internet access (a “big
pipe”). They pump out packets towards the
target at a very high rate.

• What might the target do to defend against the
onslaught?
– Install a network filter to discard any packets that

arrive with attacker’s IP address as their source
• Or it can leverage any other pattern in the flooding traffic

that’s not in benign traffic
– Filter = isolation mechanism
– Attacker’s IP address = means of identifying

misbehaving user

Filtering Sounds Pretty Easy …

• … but it’s not. What steps can the attacker take
to defeat the filtering?
– Make traffic appear as though it’s from many hosts

• Spoof the source address so it can’t be used to filter
– Just pick a random 32-bit number of each packet sent

• How does a defender filter this?
– They don’t!
– Best they can hope for is that operators around the world

implement anti-spoofing mechanisms (today about 75% do)

– Use many hosts to send traffic rather than just one
• Distributed Denial-of-Service = DDoS (“dee-doss”)
• Requires defender to install complex filters
• How many hosts is “enough” for the attacker?

– Today they are very cheap to acquire … :-(

Amplification: Network DoS

• One technique for magnifying flood traffic:
leverage Internet’s broadcast functionality

Amplification: Network DoS

• One technique for magnifying flood traffic:
leverage Internet’s broadcast functionality

• How does an attacker exploit this?
– Send traffic to the broadcast address and spoof it

as though the DoS victim sent it
– All of the replies then go to the victim rather than the

attacker’s machine
– Each attacker pkt yields dozens of flooding pkts

• Another example: DNS lookups
– Reply is often much bigger than request
– So attacker spoofs request seemingly from the target

• Small attacker packet yields large flooding packet

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
–Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force
the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection hereAttacker doesn’t

even need to
send this ack

TCP SYN Flooding

• Attacker targets memory rather than network
capacity

• Every (unique) SYN attacker sends burdens the
target

• What should target do when it has no more
memory for a new connection?

• No good answer!
–Refuse new connection? Legit new users can’t access

service
–Evict old connections to make room? Legit old users

get kicked off

TCP SYN Flooding, conʼt
• How can the target defend itself?

• Approach #1: make sure they have tons of memory!
– How much is enough? Depends on resources attacker can bring

to bear

• Approach #2: identify bad actors & refuse their
connections
– Hard because only way to identify them is based on IP address

 We can’t for example require them to send a password because
doing so requires we have an established connection!

– For a public Internet service, who knows which addresses
customers might come from?

– Plus: attacker can spoof addresses since they don’t need to
complete TCP 3-way handshake

• (Approach #3: don’t keep state! We’ll see such a technique later in
the course, “SYN cookies”)

Application-Layer DoS
• Rather than exhausting network or memory resources,

attacker can overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

Application-Layer DoS
• Rather than exhausting network or memory resources,

attacker can overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

• Defenses against such attacks?

• Approach #1: Only let legit users to issue expensive
requests
– Relies on being able to identify/authenticate them
– Note: that this itself might be expensive!

• Approach #2: At least require request to come from a
human rather than a program (“bot”)

CAPTCHAs

• Reverse Turing Test: present “user” a challenge
that’s easy for a human to solve, hard for a
program to solve

• One common approach: distorted text that’s
difficult for character-recognition algorithms to
decipher

Issues with CAPTCHAs

• Inevitable arms race: as solving algorithms get
better, defense erodes, or gets harder for humans

• Accessibility: not all humans can see!

• Granularity: not all bots are bad! (e.g., crawlers)

Issues with CAPTCHAs, conʼt

• If generating a CAPTCHA is somewhat expensive,
the mechanism itself is a DoS vulnerability!

Issues with CAPTCHAs, conʼt

• If generating a CAPTCHA is somewhat expensive,
the mechanism itself is a DoS vulnerability!

• In general, any security mechanism that takes
significant resources (CPU or state in memory)
can itself introduce a DoS vulnerability

• Final problem: CAPTCHAs are inherently
vulnerable to outsourcing attacks
–Attacker gets real humans to solve them

