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The Problem of Viruses
• Virus = code that replicates

– Instances opportunistically create new addl. instances
– Goal of replication: install code on additional systems

• Opportunistic = code will eventually execute
– Generally due to user action

• Running an app, booting their system, opening an attachment

• Separate notions for a virus: how it propagates vs.
what else it does when executed (payload)

• General infection strategy: find some code lying
around, alter it to include the virus

• Have been around for decades …
– … resulting arms race has heavily influenced evolution

of modern malware
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Propagation
• When virus runs, it looks for an opportunity to infect

additional systems
• One approach: look for USB-attached thumb drive,

alter any executables it holds to include the virus
– Strategy: if drive later attached to another system &

altered executable runs, it locates and infects
executables on new system’s hard drive

• Or: when user sends email w/ attachment, virus
alters attachment to add a copy of itself
– Works for attachment types that include programmability
– E.g., Word documents (macros), PDFs (Javascript)
– Virus can also send out such email proactively, using

user’s address book + enticing subject (“I Love You”)



Payload
• Besides propagating, what else can the virus do

when executing?
– Pretty much anything

• Payload is decoupled from propagation
• Only subject to permissions under which it runs

• Examples:
– Brag or exhort (pop up a message)
– Trash files (just to be nasty)
– Damage hardware (!)
– Keylogging
– Encrypt files

• “Ransomware”

• Possibly delayed until condition occurs
– “time bomb” / “logic bomb”



Detecting Viruses
• Signature-based detection

– Look for bytes corresponding to injected virus code
– High utility due to replicating nature

• If you capture a virus V on one system, by its nature the virus will
be trying to infect many other systems

• Can protect those other systems by installing recognizer for V
• Drove development of multi-billion $$ AV industry

(AV = “antivirus”)
– So many endemic viruses that detecting well-known

ones becomes a “checklist” item for security audits
• Using signature-based detection also has de facto

utility for (glib) marketing
– Companies compete on number of signatures …

• … rather than their quality (harder for customer to assess)



Virus Writer / AV Arms Race
• If you are a virus writer and your beautiful new

creations don’t get very far because each time you
write one, the AV companies quickly push out a
signature for it ….
– …. What are you going to do?

• Need to keep changing your viruses …
– … or at least changing their appearance!

• Writing new viruses by hand takes a lot of effort
• How can you mechanize the creation of new

instances of your viruses …
– … such that whenever your virus propagates, what it

injects as a copy of itself looks different?



Polymorphic Code
• We’ve already seen technology for creating a

representation of some data that appears
completely unrelated to the original data:
encryption!

• Idea: every time your virus propagates, it inserts a
newly encrypted copy of itself
– Clearly, encryption needs to vary

• Either by using a different key each time
• Or by including some random initial padding (like an IV)

– Note: weak (but simple/fast) crypto algorithm works fine
• No need for truly strong encryption, just obfuscation

• When injected code runs, it decrypts itself to obtain
the original functionality
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Polymorphic Propagation

New virus instance
bears little resemblance
to original



Arms Race: Polymorphic Code
• Given polymorphism, how might we then detect

viruses?
• Idea #1: use narrow sig. that targets decryptor

– Issues?
• Less code to match against ⇒ more false positives
• Virus writer spreads decryptor across existing code

• Idea #2: execute (or statically analyze) suspect
code to see if it decrypts!
– Issues?

• Legitimate “packers” perform similar operations (decompression)
• How long do you let the new code execute?

– If decryptor only acts after lengthy legit execution, difficult to spot

• Virus-writer countermeasures?



Metamorphic Code
• Idea: every time the virus propagates, generate

semantically different version of it!
– Different semantics only at immediate level of execution;

higher-level semantics remain same
• How could you do this?
• Include with the virus a code rewriter:

– Inspects its own code, generates random variant, e.g.:
• Renumber registers
• Change order of conditional code
• Reorder operations not dependent on one another
• Replace one low-level algorithm with another
• Remove some do-nothing padding and replace with different do-

nothing padding
– Can be very complex, legit code … if it’s never called!



Polymorphic Code In Action

Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001 
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Detecting Metamorphic Viruses?
• Need to analyze execution behavior

– Shift from syntax (appearance of instructions) to
semantics (effect of instructions)

• Two stages: (1) AV company analyzes new virus to find
execution signature, (2) AV software on end system
analyzes suspect code to test for match to signature

• What countermeasures will the virus writer take?
– Delay analysis by taking a long time to manifest behavior

• Long time = await particular condition, or even simply clock time
– Detect that execution occurs in an analyzed environment and if so

behave differently
• E.g., test whether running inside a debugger, or in a Virtual Machine

• Counter-countermeasure?
– AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle



Detecting Metamorphism, con’t
• Such AV analysis very expensive computationally
• Possible anomaly-based approach to reduce load by

leveraging The Cloud  (“crowdsourcing”)
– Whenever local system is about to execute a new binary, query

whether anyone else across the whole Internet has already run it
• Anyone else = other customers of AV vendor

– If so, then it’s already been analyzed as safe
– If not, subject it to rigorous based analysis

• Note: uses notion of “anomaly” as a trigger for further
action, rather than for a detection decision

• Final consideration re metamorphism: its presence can lead
to mis-counting a single virus outbreak as instead reflecting
1000s of seemingly different viruses
– Thus take care in interpreting vendor statistics on malcode varieties

• (also note: public perception that many varieties exist is in their interest)



Infection Cleanup
• Once malware detected on a system, how do we get

rid of it?
• May require restoring/repairing many files
• What about if malware executed with adminstrator

privileges?
– “nuke the entire site from orbit. It's the only way to be sure”

– i.e., rebuild system from original media + data backups

• If we have complete source code for system, we
could rebuild from that instead, right?

- Aliens
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No problem: first step,
rebuild the compiler
so it’s uninfected
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source code
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Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

No amount of careful source-code
scrutiny can prevent this problem.
And if the hardware has a back door …
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Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!
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source code
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