
Malware: Viruses

CS 161 - Computer Security
Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew
Finifter, Cynthia Sturton, Joel Weinberger
http://inst.eecs.berkeley.edu/~cs161/

April 12, 2010

The Problem of Viruses
• Virus = code that replicates

– Instances opportunistically create new addl. instances
– Goal of replication: install code on additional systems

• Opportunistic = code will eventually execute
– Generally due to user action

• Running an app, booting their system, opening an attachment

• Separate notions for a virus: how it propagates vs.
what else it does when executed (payload)

• General infection strategy: find some code lying
around, alter it to include the virus

• Have been around for decades …
– … resulting arms race has heavily influenced evolution

of modern malware

Original Program Instructions
Entry point

Virus Original Program Instructions
Entry point

1. Entry point

Original Program Instructions

Virus

2.	 JMP

3.	 JMP

Original program
instructions can be:

• Application the
user runs

• Run-time library /
routines resident
in memory

• Disk blocks used
to boot OS

• Autorun file on
USB device

• …

Many variants are
possible, and of
course can combine
techniques

Propagation
• When virus runs, it looks for an opportunity to infect

additional systems
• One approach: look for USB-attached thumb drive,

alter any executables it holds to include the virus
– Strategy: if drive later attached to another system &

altered executable runs, it locates and infects
executables on new system’s hard drive

• Or: when user sends email w/ attachment, virus
alters attachment to add a copy of itself
– Works for attachment types that include programmability
– E.g., Word documents (macros), PDFs (Javascript)
– Virus can also send out such email proactively, using

user’s address book + enticing subject (“I Love You”)

Payload
• Besides propagating, what else can the virus do

when executing?
– Pretty much anything

• Payload is decoupled from propagation
• Only subject to permissions under which it runs

• Examples:
– Brag or exhort (pop up a message)
– Trash files (just to be nasty)
– Damage hardware (!)
– Keylogging
– Encrypt files

• “Ransomware”

• Possibly delayed until condition occurs
– “time bomb” / “logic bomb”

Detecting Viruses
• Signature-based detection

– Look for bytes corresponding to injected virus code
– High utility due to replicating nature

• If you capture a virus V on one system, by its nature the virus will
be trying to infect many other systems

• Can protect those other systems by installing recognizer for V
• Drove development of multi-billion $$ AV industry

(AV = “antivirus”)
– So many endemic viruses that detecting well-known

ones becomes a “checklist” item for security audits
• Using signature-based detection also has de facto

utility for (glib) marketing
– Companies compete on number of signatures …

• … rather than their quality (harder for customer to assess)

Virus Writer / AV Arms Race
• If you are a virus writer and your beautiful new

creations don’t get very far because each time you
write one, the AV companies quickly push out a
signature for it ….
– …. What are you going to do?

• Need to keep changing your viruses …
– … or at least changing their appearance!

• Writing new viruses by hand takes a lot of effort
• How can you mechanize the creation of new

instances of your viruses …
– … such that whenever your virus propagates, what it

injects as a copy of itself looks different?

Polymorphic Code
• We’ve already seen technology for creating a

representation of some data that appears
completely unrelated to the original data:
encryption!

• Idea: every time your virus propagates, it inserts a
newly encrypted copy of itself
– Clearly, encryption needs to vary

• Either by using a different key each time
• Or by including some random initial padding (like an IV)

– Note: weak (but simple/fast) crypto algorithm works fine
• No need for truly strong encryption, just obfuscation

• When injected code runs, it decrypts itself to obtain
the original functionality

Virus Original Program Instructions

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Original Program Instructions

}

Jmp

Instead of this …

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob …

… and jumps to the
decrypted code once
stored in memory

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Jmp

Once running, virus
uses an encryptor with
a new key to propagate

Encryptor
}

D
ecryptor

Different Encrypted Glob of Bits

K
ey2

Polymorphic Propagation

New virus instance
bears little resemblance
to original

Arms Race: Polymorphic Code
• Given polymorphism, how might we then detect

viruses?
• Idea #1: use narrow sig. that targets decryptor

– Issues?
• Less code to match against ⇒ more false positives
• Virus writer spreads decryptor across existing code

• Idea #2: execute (or statically analyze) suspect
code to see if it decrypts!
– Issues?

• Legitimate “packers” perform similar operations (decompression)
• How long do you let the new code execute?

– If decryptor only acts after lengthy legit execution, difficult to spot

• Virus-writer countermeasures?

Metamorphic Code
• Idea: every time the virus propagates, generate

semantically different version of it!
– Different semantics only at immediate level of execution;

higher-level semantics remain same
• How could you do this?
• Include with the virus a code rewriter:

– Inspects its own code, generates random variant, e.g.:
• Renumber registers
• Change order of conditional code
• Reorder operations not dependent on one another
• Replace one low-level algorithm with another
• Remove some do-nothing padding and replace with different do-

nothing padding
– Can be very complex, legit code … if it’s never called!

Polymorphic Code In Action

Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

Metamorphic Code In Action

Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

Detecting Metamorphic Viruses?
• Need to analyze execution behavior

– Shift from syntax (appearance of instructions) to
semantics (effect of instructions)

• Two stages: (1) AV company analyzes new virus to find
execution signature, (2) AV software on end system
analyzes suspect code to test for match to signature

• What countermeasures will the virus writer take?
– Delay analysis by taking a long time to manifest behavior

• Long time = await particular condition, or even simply clock time
– Detect that execution occurs in an analyzed environment and if so

behave differently
• E.g., test whether running inside a debugger, or in a Virtual Machine

• Counter-countermeasure?
– AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle

Detecting Metamorphism, con’t
• Such AV analysis very expensive computationally
• Possible anomaly-based approach to reduce load by

leveraging The Cloud (“crowdsourcing”)
– Whenever local system is about to execute a new binary, query

whether anyone else across the whole Internet has already run it
• Anyone else = other customers of AV vendor

– If so, then it’s already been analyzed as safe
– If not, subject it to rigorous based analysis

• Note: uses notion of “anomaly” as a trigger for further
action, rather than for a detection decision

• Final consideration re metamorphism: its presence can lead
to mis-counting a single virus outbreak as instead reflecting
1000s of seemingly different viruses
– Thus take care in interpreting vendor statistics on malcode varieties

• (also note: public perception that many varieties exist is in their interest)

Infection Cleanup
• Once malware detected on a system, how do we get

rid of it?
• May require restoring/repairing many files
• What about if malware executed with adminstrator

privileges?
– “nuke the entire site from orbit. It's the only way to be sure”

– i.e., rebuild system from original media + data backups

• If we have complete source code for system, we
could rebuild from that instead, right?

- Aliens

/bin/login
source code

Compiler

/bin/login
executable

Regular compilation
process of building login
binary from source code

/bin/login
source code

Compiler

/bin/login
executable

Infected compiler
recognizes when it’s
compiling /bin/login
source and inserts extra
back door when seen

No problem: first step,
rebuild the compiler
so it’s uninfected

Correct compiler
source code

 Infected Compiler

Correct compiler
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

No amount of careful source-code
scrutiny can prevent this problem.
And if the hardware has a back door …

 Infected Compiler

 Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Correct compiler
source code

X

