
Surreptitious
Communication

CS 161 - Computer Security
Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew
Finifter, Cynthia Sturton, Joel Weinberger
http://inst.eecs.berkeley.edu/~cs161/

April 26, 2010

Steganography
• Transmitting hidden messages using a known

communication channel
– Or hiding extra data inside known storage

• Goal: Sneak past a reference monitor (“warden”)
• Examples?

– Zillions: tattooed heads of slaves, least-significant bits of
image pixels, extra tags in HTML documents, …

– All that’s necessary is agreement between writer of
message & reader of message

• Security?
– Brittle: relies on security-by-obscurity

• Warden can extract/block messages if they know the trick

Covert Channels
• Communication between two parties

that uses a hidden (secret) channel
• Goal: evade reference monitor

inspection entirely
– Warden doesn’t even realize communication is

possible
• Example: suppose (unprivileged) process A

wants to send 128 bits of secret data to
(unprivileged) process B …
– But can’t use pipes, sockets, signals, or shared

memory; and can only read files, can’t write them

Covert Channels, con’t
• Method #1: A syslog’s data, B reads via /var/log/…
• Method #2: select 128 files in advance. A opens for

read only those corresponding to 1-bit’s in secret.
– B recovers bit values by inspecting access times on files

• Method #3: divide A’s running time up into 128
slots. A either runs CPU-bound - or idle - in a slot
depending on corresponding bit in the secret. B
monitors A’s CPU usage.

• Method #4: Suppose A can run 128 times. Each
time it either exits after 2 seconds (0 bit) or after 30
seconds (1 bit).

• Method #5: …
– There are zillions of Method #5’s!

Covert Channels, con’t
• Defenses?
• As with steganography, #1 challenge is

identifying the mechanisms
• Some mechanisms can be very hard to

completely remove
– E.g., duration of program execution

• Fundamental issue is the covert channel’s
capacity
– Bits (or bit-rate) that adversary can obtain using it

• Crucial for defenders to consider their threat
model

Side Channels
• Inferring information meant to be hidden /

private by exploiting how system is structured
– Note: unlike for steganography & covert

channels, here we do not assume a cooperating
sender / receiver

• Can be difficult to recognize because often
system builders “abstract away” seemingly
irrelevant elements of system structure

• Side channels can arise from physical
structure …

Side Channels
• Inferring information meant to be hidden /

private by exploiting how system is structured
– Note: unlike for steganography & covert

channels, here we do not assume a cooperating
sender / receiver

• Can be difficult to recognize because often
system builders “abstract away” seemingly
irrelevant elements of system structure

• Side channel can arise from physical
structure …
– … or higher-layer abstractions

/*	 Returns	 true	 if	 the	 password	 from	 the
	 *	 user,	 'p',	 matches	 the	 correct	 master
	 *	 password.	 */
bool	 check_password(char	 *p)
{

static	 char	 *master_pw	 =	 "T0p$eCRET";
int	 i;
for(i=0;	 p[i]	 &&	 master_pw[i];	 ++i)

if(p[i]	 !=	 master_pw[i])
return	 FALSE;

/*	 Ensure	 both	 strings	 are	 same	 len.	 */
return	 p[i]	 ==	 master_pw[i];

}

Inferring Password via Side Channel
• Suppose the attacker’s code can call
check_password many times (but not
millions)
– But attacker can’t breakpoint or inspect the code

• How could the attacker infer the master
password using side channel information?

• Consider layout of p in memory:

wildGUe$s
...
if(check_password(p))

BINGO();
...

wildGUe$s

Spread p across different memory pages:

Arrange for this page to be paged out

If master password doesn’t start with ‘w’, then loop exits on
first iteration (i=0):

for(i=0;	 p[i]	 &&	 master_pw[i];	 ++i)
if(p[i]	 !=	 master_pw[i])

return	 FALSE;

If it does start with ‘w’, then loop proceeds to next iteration,
generating a page fault that the caller can observe

Ajunk....

Bjunk....

Tjunk....
…

…

No page
fault

Page
fault!

No page
fault

TAunk.... No page
fault

TBunk.... No page
fault

T0Ank.... No page
fault …

T0unk.... Page
fault!

T0p$eCRET ?

Fix?

bool	 check_password2(char	 *p)
{

static	 char	 *master_pw	 =	 "T0p$eCRET”;
int	 i;
bool	 is_correct	 =	 TRUE;

for(i=0;	 p[i]	 &&	 master_pw[i];	 ++i)
if(p[i]	 !=	 master_pw[i])

is_correct	 =	 FALSE;
	

if(p[i]	 !=	 master_pw[i])
is_correct	 =	 FALSE;

return	 is_correct;
} Note: still leaks length of master password

Side Channels in Web Surfing
• Suppose Alice is surfing the web and all of

her traffic is encrypted
• Eve can observe the presence of Alice’s

packets but can’t read their contents or
destination

• How can Eve deduce that Alice is visiting
FoxNews (say)?

Eve “fingerprints” web sites based on the
specific sizes of the items used to build them

Side Channels in Web Surfing
• Suppose Alice is surfing the web and all of

her traffic is encrypted
• Eve can observe the presence of Alice’s

packets but can’t read their contents or
destination

• How can Eve deduce that Alice is visiting
FoxNews (say)?

• What about inferring what terms Alice is
searching on?

102 chars. 125 chars. 107 chars.

136 chars. 101 chars. 102 chars.

Exploiting Side Channels
For Stealth Scanning

• Can attacker using system A scan the server
of victim V to see what services V runs …

• … without V being able to learn A’s IP
address?

• Seems impossible: how can A receive the
results of probes A sends to V, unless probes
include A’s IP address for V’s replies?

IP Header Side Channel
4-bit

Version
4-bit

Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

ID field is
supposed to be
unique per IP
packet.

One easy way to
do this: increment
it each time
system sends a
new packet.

SYN-ACK

UI Side Channel Snooping
• Scenario: Ann the Attacker works in a

building across the street from Victor the
Victim. Late one night Ann can see Victor
hard at work in his office, but can’t see his
CRT display, just the glow of it on his face.

• How might Ann snoop on what Victor’s
display is showing?

CRT display is made up of
an array of phosphor pixels

640x480 (say)

Electron gun sweeps across row
of pixels, illuminating each that
should be lit one after the other

When done with row, proceeds
to next. When done with screen,
starts over.

Thus, if image isn’t
changing, each pixel is
periodically illuminated
at its own unique time

Illumination is
actually short-lived
(100s of nsec).

Photomultiplier + high-precision timing +
deconvolution to remove noise

