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Announcements

• Homework #4 is out
– Due next Thursday 5PM

• My office hours next Monday are 2:30-3:30



Styles of Detection: Signature-Based
• Idea: look for activity that matches the structure of

a known attack
• Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to_server,established

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"
msg:"EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

• Can be at different semantic layers,
e.g.: IP/TCP header fields; packet payload; URLs



Signature-Based Detection, con’t
• E.g. for FooCorp, search for “../../” or “/etc/passwd”

• What’s nice about this approach?
– Conceptually simple
– Takes care of known attacks (of which there are zillions)
– Easy to share signatures, build up libraries

• What’s problematic about this approach?
– Blind to novel attacks
– Might even miss variants of known attacks (“..///.//../”)

• Of which there are zillions
– Simpler versions look at low-level syntax, not semantics

• Can lead to weak power (either misses variants, or generates
lots of false positives)



Styles of Detection: Anomaly-Based
• Idea: attacks look peculiar.
• High-level approach: develop a model of normal

behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

• FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
– If we happen to learn that ‘.’s have this property, then

could detect the attack even without knowing it exists
• Big benefit: potential detection of a wide range of

attacks, including novel ones



Anomaly Detection, con’t
• What’s problematic about this approach?

– Can fail to detect known attacks
– Can fail to detect novel attacks, if don’t happen

to look peculiar along measured dimension
– What happens if the historical data you train on

includes attacks?
– Base-rate fallacy particularly acute: if prevalence

of attacks is low, then you’re more often going to
see benign outliers

• High FP rate
• OR: require such a stringent deviation from “normal”

that most attacks are missed



Specification-Based Detection
• Idea: don’t learn what’s normal; specify what’s

allowed
• FooCorp example: decide that all URL parameters

sent to foocorp.com servers must have at most
one ‘/’ in them
– Flag any arriving param with > 1 slash as an attack

• What’s nice about this approach?
– Can detect novel attacks
– Can have low false positives

• If FooCorp audits its web pages to make sure they comply

• What’s problematc about this approach?
– Expensive: lots of labor to derive specifications

• And keep them up to date as things change (“churn”)



Styles of Detection: Behavioral
• Idea: don’t look for attacks, look for evidence of

compromise
• FooCorp example: inspect all output web traffic for

any lines that match a passwd file
• Example for monitoring user shell keystrokes:

unset	  HISTFILE
• Example for catching code injection: look at

sequences of system calls, flag any that prior
analysis of a given program shows it can’t generate
– E.g., observe process executing read(), open(), write(),
fork(), exec()    …

– … but there’s no code path in the (original) program that
calls those in exactly that order!



Behavioral-Based Detection, con’t
• What’s nice about this approach?

– Can detect a wide range of novel attacks
– Can have low false positives

• Depending on degree to which behavior is distinctive
• E.g., for system call profiling: no false positives!

– Can be cheap to implement
• E.g., system call profiling can be mechanized

• What’s problematic about this approach?
– Post facto detection: discovers that you definitely have a

problem, w/ no opportunity to prevent it
– Brittle: depending on behavior, attacker can avoid it

• Easy enough to not type “unset HISTFILE”
• How could they evade system call profiling?

– Mimicry: adapt injected code to comply w/ allowed call sequences



The Problem of Evasion
• For any detection approach, we need to consider

how an adversary might (try to) elude it
– Note: even if the approach is evadable, it can still be

useful to operate in practice
– But if it’s very easy to evade, that’s especially worrisome

(security by obscurity)

• Some evasions reflect incomplete analysis
– In our FooCorp example, hex escapes or “..////.//../” alias
– In principle, can deal with these with implementation

care (make sure we fully understand the spec)



The Problem of Evasion, con’t
• Some evasions exploit deviation from the spec

– E.g., double-escapes for SQL injection:
    %25%32%37 ⇒ %27 ⇒  '

• Some can exploit more fundamental ambiguities:
– Problem grows as monitoring viewpoint increasingly

removed from ultimate endpoints
• Lack of end-to-end visibility

• Particularly acute for network monitoring
• Consider detecting occurrences of the string

“root” inside a network connection …
– We get a copy of each packet
– How hard can it be?



Detecting “root”: Attempt #1

 Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’
 Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters …

…….….root………..…………1

Oops: TCP doesn’t preserve text boundaries

Are we done?

Packet

…….….ro1

Packet #1

ot………..…………
2

Packet #2 Fix?



Detecting “root”: Attempt #2
 Okay: remember match from end of previous packet

Oops: TCP doesn’t guarantee in-order arrival

ot………..…………
2

…….….ro1?

- Now we’re managing state :-(
  Are we done?

…….….ro1

Packet #1

When 2nd packet arrives, continue working on the match

ot………..…………
Packet #2

2
+



• Fix?

• We need to reassemble the entire TCP bytestream
– Match sequence numbers
– Buffer packets with later data (above a sequence “hole”)

• Issues?
– Potentially requires a lot of state
– Plus: attacker can cause us to exhaust state by sending

lots of data above a sequence hole

• But at least we’re done, right?

Detecting “root”: Attempt #3



Full TCP Reassembly is Not Enough
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• Fix?
• Idea: NIDS can alert upon seeing a retransmission

inconsistency, as surely it reflects someone up to no good
• This doesn’t work: TCP retransmissions broken in this

fashion occur in live traffic
– Rare (a few a day at ICSI)
– But real evasions much rarer still (Base Rate Fallacy)
⇒  This is a general problem with alerting on such ambiguities

• Idea: if NIDS sees such a connection, kill it
– Works for this case, since benign instance is already fatally broken
– But for other evasions, such actions have collateral damage

• Idea: rewrite traffic to remove ambiguities
– Works for network- & transport-layer ambiguities
– But must operate in-line and at line speed

Inconsistent TCP Retransmissions



Summary of Evasion Issues
• Evasions arise from uncertainty (or incompleteness)

because your detector must infer behavior/processing it
can’t directly observe
– A general problem any time detection separate from potential target

• One general strategy: impose canonical form (“normalize”)
– E.g., rewrite URLs to expand/remove hex escapes

• Another strategy: analyze all possible interpretations rather
than assuming one
– E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL ...

• Another: proactively determine how processing will occur
– E.g., probe your own server w/ directory traversal URL, see if

passwd file leaks
• If not: don’t bother alerting on attack attempt!

– Fits w/ prudent general strategy of regularly scanning your own site



NIDS vs. HIDS
• NIDS benefits:

– Can cover a lot of systems with single deployment
• Much simpler management

– Easy to “bolt on” / no need to touch end systems
– Doesn’t consume production resources on end systems
– Harder for an attacker to subvert / less to trust

• HIDS benefits:
– Can have direct access to semantics of activity

• Better positioned to block (prevent) attacks
• Harder to evade

– Can protect against non-network threats
– Visibility into encrypted activity
– Performance scales much more readily (no chokepoint)

• No issues with “dropped” packets


