
Detecting Attacks, Part 2

CS 161 - Computer Security
Profs. Vern Paxson & David Wagner

TAs: John Bethencourt, Erika Chin, Matthew
Finifter, Cynthia Sturton, Joel Weinberger
http://inst.eecs.berkeley.edu/~cs161/

April 9, 2010

Announcements

• Homework #4 is out
– Due next Thursday 5PM

• My office hours next Monday are 2:30-3:30

Styles of Detection: Signature-Based
• Idea: look for activity that matches the structure of

a known attack
• Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to_server,established

content:"|eb2f 5feb 4a5e 89fb 893e 89f2|"
msg:"EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

• Can be at different semantic layers,
e.g.: IP/TCP header fields; packet payload; URLs

Signature-Based Detection, con’t
• E.g. for FooCorp, search for “../../” or “/etc/passwd”

• What’s nice about this approach?
– Conceptually simple
– Takes care of known attacks (of which there are zillions)
– Easy to share signatures, build up libraries

• What’s problematic about this approach?
– Blind to novel attacks
– Might even miss variants of known attacks (“..///.//../”)

• Of which there are zillions
– Simpler versions look at low-level syntax, not semantics

• Can lead to weak power (either misses variants, or generates
lots of false positives)

Styles of Detection: Anomaly-Based
• Idea: attacks look peculiar.
• High-level approach: develop a model of normal

behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

• FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
– If we happen to learn that ‘.’s have this property, then

could detect the attack even without knowing it exists
• Big benefit: potential detection of a wide range of

attacks, including novel ones

Anomaly Detection, con’t
• What’s problematic about this approach?

– Can fail to detect known attacks
– Can fail to detect novel attacks, if don’t happen

to look peculiar along measured dimension
– What happens if the historical data you train on

includes attacks?
– Base-rate fallacy particularly acute: if prevalence

of attacks is low, then you’re more often going to
see benign outliers

• High FP rate
• OR: require such a stringent deviation from “normal”

that most attacks are missed

Specification-Based Detection
• Idea: don’t learn what’s normal; specify what’s

allowed
• FooCorp example: decide that all URL parameters

sent to foocorp.com servers must have at most
one ‘/’ in them
– Flag any arriving param with > 1 slash as an attack

• What’s nice about this approach?
– Can detect novel attacks
– Can have low false positives

• If FooCorp audits its web pages to make sure they comply

• What’s problematc about this approach?
– Expensive: lots of labor to derive specifications

• And keep them up to date as things change (“churn”)

Styles of Detection: Behavioral
• Idea: don’t look for attacks, look for evidence of

compromise
• FooCorp example: inspect all output web traffic for

any lines that match a passwd file
• Example for monitoring user shell keystrokes:

unset	 HISTFILE
• Example for catching code injection: look at

sequences of system calls, flag any that prior
analysis of a given program shows it can’t generate
– E.g., observe process executing read(), open(), write(),
fork(), exec() …

– … but there’s no code path in the (original) program that
calls those in exactly that order!

Behavioral-Based Detection, con’t
• What’s nice about this approach?

– Can detect a wide range of novel attacks
– Can have low false positives

• Depending on degree to which behavior is distinctive
• E.g., for system call profiling: no false positives!

– Can be cheap to implement
• E.g., system call profiling can be mechanized

• What’s problematic about this approach?
– Post facto detection: discovers that you definitely have a

problem, w/ no opportunity to prevent it
– Brittle: depending on behavior, attacker can avoid it

• Easy enough to not type “unset HISTFILE”
• How could they evade system call profiling?

– Mimicry: adapt injected code to comply w/ allowed call sequences

The Problem of Evasion
• For any detection approach, we need to consider

how an adversary might (try to) elude it
– Note: even if the approach is evadable, it can still be

useful to operate in practice
– But if it’s very easy to evade, that’s especially worrisome

(security by obscurity)

• Some evasions reflect incomplete analysis
– In our FooCorp example, hex escapes or “..////.//../” alias
– In principle, can deal with these with implementation

care (make sure we fully understand the spec)

The Problem of Evasion, con’t
• Some evasions exploit deviation from the spec

– E.g., double-escapes for SQL injection:
 %25%32%37 ⇒ %27 ⇒ '

• Some can exploit more fundamental ambiguities:
– Problem grows as monitoring viewpoint increasingly

removed from ultimate endpoints
• Lack of end-to-end visibility

• Particularly acute for network monitoring
• Consider detecting occurrences of the string

“root” inside a network connection …
– We get a copy of each packet
– How hard can it be?

Detecting “root”: Attempt #1

 Method: scan each packet for ‘r’, ‘o’, ‘o’, ‘t’
 Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters …

…….….root………..…………1

Oops: TCP doesn’t preserve text boundaries

Are we done?

Packet

…….….ro1

Packet #1

ot………..…………
2

Packet #2 Fix?

Detecting “root”: Attempt #2
 Okay: remember match from end of previous packet

Oops: TCP doesn’t guarantee in-order arrival

ot………..…………
2

…….….ro1?

- Now we’re managing state :-(
 Are we done?

…….….ro1

Packet #1

When 2nd packet arrives, continue working on the match

ot………..…………
Packet #2

2
+

• Fix?

• We need to reassemble the entire TCP bytestream
– Match sequence numbers
– Buffer packets with later data (above a sequence “hole”)

• Issues?
– Potentially requires a lot of state
– Plus: attacker can cause us to exhaust state by sending

lots of data above a sequence hole

• But at least we’re done, right?

Detecting “root”: Attempt #3

Full TCP Reassembly is Not Enough

NIDS

r r
seq=1, TTL=22

n
seq=1, TTL=16

X

o o
seq=2, TTL=22

i
seq=2, TTL=16

X

o o
seq=3, TTL=22

c
seq=3, TTL=16

X

t t
seq=4, TTL=22

e
seq=4, TTL=16

X

Se
nd

er
 /

 A
tt

ac
ke

r
Receiver

r

rrorooroot

r?

n?

ri?

ni?

ri? ro?

ni? no?
ric? roc? rio? roo?
nic? noc? nio? noo?

rice? roce? rict? roct?
riot? root? rioe? rooe?
nice? noce? nict? noct?
niot? noot? nioe? nooe?

Packet discarded in transit due
to TTL hop count expiring

TTL field in IP header
specifies maximum

forwarding hop count

Assume the Receiver
is 20 hops away

Assume NIDS is 15 hops away

• Fix?
• Idea: NIDS can alert upon seeing a retransmission

inconsistency, as surely it reflects someone up to no good
• This doesn’t work: TCP retransmissions broken in this

fashion occur in live traffic
– Rare (a few a day at ICSI)
– But real evasions much rarer still (Base Rate Fallacy)
⇒ This is a general problem with alerting on such ambiguities

• Idea: if NIDS sees such a connection, kill it
– Works for this case, since benign instance is already fatally broken
– But for other evasions, such actions have collateral damage

• Idea: rewrite traffic to remove ambiguities
– Works for network- & transport-layer ambiguities
– But must operate in-line and at line speed

Inconsistent TCP Retransmissions

Summary of Evasion Issues
• Evasions arise from uncertainty (or incompleteness)

because your detector must infer behavior/processing it
can’t directly observe
– A general problem any time detection separate from potential target

• One general strategy: impose canonical form (“normalize”)
– E.g., rewrite URLs to expand/remove hex escapes

• Another strategy: analyze all possible interpretations rather
than assuming one
– E.g., analyze raw URL, hex-escaped URL, doubly-escaped URL ...

• Another: proactively determine how processing will occur
– E.g., probe your own server w/ directory traversal URL, see if

passwd file leaks
• If not: don’t bother alerting on attack attempt!

– Fits w/ prudent general strategy of regularly scanning your own site

NIDS vs. HIDS
• NIDS benefits:

– Can cover a lot of systems with single deployment
• Much simpler management

– Easy to “bolt on” / no need to touch end systems
– Doesn’t consume production resources on end systems
– Harder for an attacker to subvert / less to trust

• HIDS benefits:
– Can have direct access to semantics of activity

• Better positioned to block (prevent) attacks
• Harder to evade

– Can protect against non-network threats
– Visibility into encrypted activity
– Performance scales much more readily (no chokepoint)

• No issues with “dropped” packets

