
Paxson
Spring 2011

CS 161
Computer Security Discussion 9

March 30, 2011

Question 1 Another Use for Hash Functions (8 min)
The traditional Unix system for password authentication works more or less like the
following. When a user u initially chooses a password p, a random string s (referred
to as the “salt”) is selected and the value r = H(p || s) is computed, where H is a
cryptographic hash function. The tuple (u, s, r) is then added to the file /etc/passwd.
When some user later attempts to log in by typing a username u′ and password p′, the
system looks for a matching entry (u′, s′, r′) in /etc/passwd and checks that H(p′ || s′) =
r′.

Note that modern systems usually keep the hash in a separate file, /etc/shadow, which
has its permissions set to prevent ordinary users from reading it (unless they have phys-
ical access to the machine, in which case they can of course read anything). This detail
isn’t really relevant to this problem, though.

Also, while the Unix password system is effectively the hashing procedure described
above, this fact is somewhat obscured by the unusual choice of “hash function”: a
DES variant keyed on the password is applied to the salt. The hashing process is
also confusingly referred to as “encryption”, e.g., in crypt(3). Presumably the phrase
“irreversible encryption” was sometimes used to refer to cryptographic hash functions a
long time ago; that may be the origin of this odd terminology.

(a) In this system, what do you suppose the purpose of the hash function H is? Why
not just store (u, p) directly in /etc/passwd without computing any hashes? Is
there an advantage in terms of security or efficiency?

Solution: The purpose is to prevent someone who can read /etc/passwd from
discovering all the user passwords, while still allowing a typed password to be
checked against that file. This is a security advantage, since a user may have
chosen the same password on another system, among other reasons.

(b) Recall the three properties of cryptographic hash functions: (1) one-wayness, (2)
second preimage resistance, and (3) collision resistance.

Suppose you have three candidate hash functions H1, H2, and H3 and that that
H1 has property (1), H2 has properties (1) and (2), and H3 has all of the above
properties. Which of these hash functions would be a suitable choice for the pass-
word hashing system described? Would any fail to gain the security or efficiency
advantage described in part (a)?

Page 1 of 5

Solution: Any of the three would be fine – the hash function need only be
one-way. To be able to impersonate a user after looking at /etc/passwd (or
/etc/shadow), an attacker would have to find a password they can type that
hashes to the stored value. This is the situation described by the one-way
property.

Second preimage resistance would mean the attacker can’t do this even if they
see the original password, which isn’t relevant to our threat model. (If they
already know one working password, they can just use that.)

Collision resistance is similarly unnecessary: it does not help to find to two
passwords that collide, i.e., hash to the same value. The attacker wants to find
a particular password for a given hash.

(c) What do you suppose the purpose of the “salt” s is? Why not just compute r =
H(p) and store (u, r) in /etc/passwd?

Solution: Under the described scheme, the best way for an attacker to find
out a password based on the hash is to try hashing guesses one after another (a
dictionary attack). If no salt was included, this could be done more efficiently
across many systems by building a big, static database of hashed candidate
passwords (also known as rainbow table) and checking the contents of various
/etc/passwd files against it. With salt, an attacker is forced to try hashing each
password guess all over again for each account they want to crack. Salt also
prevents /etc/passwd files from revealing when users choose the same password
on multiple systems.

Question 2 Timestamps (8 min)
Timestamps are often an integral part of cryptographic protocols. Consider the following
protocol for synchronizing a clock with a time server.

Message 1 A→ S: A,Na

Message 2 S → A: {Ts, Na}Kas

A sends a message to the timeserver and includes a nonce Na. The timeserver responds
with the current time, Ts, and the nonce, using a shared key previously agreed upon by
A and S. If the response arrives in a reasonable amount of time, A will accept Ts as the
current time.

How can an active attacker trick A into setting back its clock? What sort of damage

Discussion 9 Page 2 of 5 CS 161 – SP 11

can a slow clock cause?

Hint: The protocol doesn’t specify the length or randomness of the nonce. What can
an attacker do if the nonce is predictable?

Solution: The protocol would not work if Na were predictable. An attacker M can
run the protocol with the server at time T0 pretending to be A using a nonce Nm,
whose value will be used by A at some future point. Then, at some point T > T0,
A makes a request to the server to which M responds with the known valid reply
{T0, Nm}Kas .

A client with a slow clock can be tricked into accepting old communications that rely
on timestamps to indicate freshness. This type of attack is known as replay attack.
A slow clock may also trick a client into accepting an expired certificate.

This example was taken from a famous paper by Abadi and Needham [1], discussing
design principles for the implementation of cryptographic protocols.

Question 3 El Gamal and Chosen Ciphertext Attacks (9 min)
The lecture notes explain El Gamal encryption as follows. The public parameters are
a large prime p and an integer g such that 1 < g < p − 1; these values are known to
everyone. To generate a key, Bob chooses a random value b (satisfying 0 ≤ b ≤ p−2) and
computes B = gb mod p. Bob’s public key is B, and his private key is b. If Alice has a
message m (in the range 1 . . . p−1) for Bob that she wants to encrypt, she picks a random
value r (in the range 0 . . . p− 2) and forms the ciphertext (gr mod p,m ·Br mod p). To
decrypt a ciphertext (R, S), Bob computes R−b · S mod p = m.

(a) Suppose you intercept two ciphertexts (R1, S1) and (R2, S2) that Alice has encrypted
for Bob. Assume they are encryptions of some unknown messages m1 and m2,
and that you have Bob’s public key (but not his private key). Show how you
can construct a ciphertext which is a valid El Gamal encryption of the message
m1 ·m2 mod p.

Solution: The ciphertext may be constructed as follows, where all computa-
tions are done modulo p.

We have that R1 = gr1 , R2 = gr2 , S1 = m1 · Br1 , and S2 = m2 · Br2 for some
r1, r2. Define r3 = r1 + r2 and compute the following:

R3 = R1 ·R2 = gr1+r2 = gr3

S3 = S1 · S2 = m1 ·m2 ·Br1+r2 = m1 ·m2 ·Br3

Discussion 9 Page 3 of 5 CS 161 – SP 11

So (R3, S3) is a valid encryption of m1 · m2. In technical terms, El Gamal is
homomorphic under multiplication, i.e.,

E(m1) · E(m2) = (gr1 , Br1)(gr2 , Br2) = (gr1+r2 , Br1+r2) = E(m1 ·m2).

Discussion 9 Page 4 of 5 CS 161 – SP 11

(b) Show how the above property of El Gamal leads to a chosen ciphertext attack. That
is, assume you are given an El Gamal public key B and a ciphertext (R, S) which
is an encryption of some unknown message m and that you are furthermore given
access to an oracle that will decrypt any ciphertext other than (R, S). Based on
these things, compute m.

Solution: (Again we implicitly assume computation modulo p.) Since (R, S)
is encryption of m there exists an r such that (R, S) = (gr,m ·Br).

Pick any m′ 6= 1 and any r′ 6= 0 and compute

R′ = R · gr′ = gr+r′

S ′ = S ·m′ ·Br′ = m ·m′ ·Br+r′

Submit (R′, S ′) to the oracle for decryption. Note that (R′, S ′) is a valid en-
cryption of m ·m′ and (R′, S ′) 6= (R, S), so the oracle will give us m ·m′ as the
result. Given m ·m′, we may simple multiply by m′−1 to obtain m.

References

[1] Mart́ın Abadi and Roger Needham. Prudent Engineering Practice for Cryptographic
Protocols. IEEE Trans. Softw. Eng., 22:6–15, January 1996.

Discussion 9 Page 5 of 5 CS 161 – SP 11

