Detecting Attacks, Part 2

CS 161: Computer Security

Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/

Announcements

» Talk of possible interest next Monday:

— Roger Dingledine, head of the Tor project
—4-5:30PM, 110 South Hall

 HKN reviews next Thursday (April 21)

* Project #2 out soon
— Due RRR week

Goals For Today

» General approaches (“styles™) to

* The fundamental problem of evasion

* Analyzing successful attacks: forensics

Styles of Detection: Signature-Based

 |dea: look for activity that matches the structure of
a
 Example (from the freeware Snort NIDS):

alert tcp $EXTERNAL_NET any -> $HOME_NET
139 flow:to server,established

content:" |eb2f 5feb 4a5e 89fb 893e 89f2|"
msqg: "EXPLOIT x86 linux samba overflow"
reference:bugtraq,1816
reference:cve,CVE-1999-0811
classtype:attempted-admin

« Can be at different semantic layers,
e.g.: IP/TCP header fields; packet payload; URLs

Sighature-Based Detection, con’t

« E.g. for FooCorp, search for “../../" or “/etc/passwd”

* What's nice about this approach?
— Conceptually simple
— Takes care of known attacks (of which there are zillions)
— Easy to share signatures, build up libraries

 What's problematic about this approach?
— Blind to novel attacks

— Might even miss variants of known attacks (“..///.//..I")
« Of which there are zillions

— Simpler versions look at low-level syntax, not semantics

« Can lead to weak power (either misses variants, or generates
lots of false positives)

Vulnerability Signatures

l[dea: don’t match on known attacks, match on

Example (also from Snort):

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 80
uricontent: ".ida?"; nocase; dsize: > 239; flags:A+
msqg:'"Web-IIS ISAPI .ida attempt"”
reference:bugtraq, 1816

reference:cve,CAN-2000-0071
classtype:attempted-admin

That is, match URIs that invoke *.ida”*, have more than
239 bytes of payload, and have ACK set (maybe others too)

This example detects any™ attempt to exploit a particular
buffer overflow in IS web servers

— Used by the “Code Red” worm
* (Note, signature is not quite complete)

Vulnerability Signatures, con’t

* What's nice about this approach?

Benefits of attack signatures

— Can detect variants of known attacks
— Much more than per-attack signatures

* \What's problematic?
— Can’t detect novel attacks (new vulnerabilities)

— Signatures can be hard to write / express
« Can’t just observe an attack that works ...
* ... heed to delve into it works

Styles of Detection: Anomaly-Based

* |dea: attacks look peculiar.

* High-level approach: develop a model of
behavior (say based on analyzing historical logs).
Flag activity that deviates from it.

* FooCorp example: maybe look at distribution of
characters in URL parameters, learn that some are
rare and/or don’t occur repeatedly
— If we happen to learn that ‘.’s have this property, then

could detect the attack even without knowing it exists

* Big benefit: potential detection of a wide range of
attacks,

Anomaly Detection, con’t

* What's problematic about this approach?
— Can fail to detect known attacks

— Can fail to detect novel attacks, if don’t happen
to look peculiar along measured dimension

— What happens if the historical data you train on
includes attacks?

— Base Rate Fallacy particularly acute: if
prevalence of attacks is low, then you're more
often going to see benign outliers

* High FP rate

« OR: require such a stringent deviation from “normal”
that most attacks are missed (high FN rate)

Specification-Based Detection

ldea: don’t learn what's normal; specify what's
allowed

FooCorp example: decide that all URL parameters
sent to foocorp.com servers must have at most
one /" in them
— Flag any arriving param with > 1 slash as an attack
What's nice about this approach?
— Can detect novel attacks
— Can have low false positives

 If FooCorp audits its web pages to make sure they comply
What's problematic about this approach?

— Expensive: lots of labor to derive specifications
» And keep them up to date as things change (“churn”)

Styles of Detection: Behavioral

|dea: don’t look for attacks, look for evidence of
compromise

FooCorp example: inspect all output web traffic for
any lines that match a passwd file

Example for monitoring user shell keystrokes:
unset HISTFILE

Example for catching code injection: look at

sequences of system calls, flag any that prior

analysis of a given program shows it can't generate

— E.g., observe process executing read(), open(), write(),
fork(), exec()

— ... but there’s no code path in the (original) program that
calls those in exactly that order!

Behavioral-Based Detection, con’t

* What's nice about this approach?
— Can detect a wide range of novel attacks

— Can have low false positives
* Depending on degree to which behavior is distinctive
* E.g., for system call profiling:

— Can be cheap to implement
« E.g., system call profiling can be mechanized

 What's problematic about this approach?

— Post facto detection: discovers that you definitely have a
problem, w/ no opportunity to prevent it

— Brittle: for some behaviors, attacker can maybe avoid it
« Easy enough to not type “unset HISTFILE”

* How could they evade system call profiling?
— Mimicry: adapt injected code to comply w/ allowed call sequences

Styles of Detection: Honeypots

ldea: deploy a that has no
operational purpose

Any access is by definition not authorized ...

... and thus an intruder
— (or some sort of mistake)

Provides opportunity to:

— Identify intruders

— Study what they're up to

— Divert them from legitimate targets

Honeypots, con’t

« Real-world example: some hospitals enter fake
records with celebrity names ...
— ... to entrap staff who don't respect confidentiality

* What's nice about this approach?
— Can detect

 What's problematic about this approach?

— Can be difficult to lure the attacker
— Can be a lot of work to build a convincing environment

— Note: both of these issues matter less when deploying
honeypots for automated attacks

« Because these have more predictable targeting & env. needs

- Eg.° ". fake email addresses to catching spambots

5 Minute Break

Questions Before We Proceed?

The Problem of Evasion

* For any detection approach, we need to consider
how an adversary might (try to) elude it

— Note: even if the approach is evadable, it can still be
useful to operate in practice

— But if it's very easy to evade, that's especially worrisome
(security by obscurity)

« Some evasions reflect incomplete analysis
— In our FooCorp example, hex escapes or “..////./]..I" alias

— In principle, can deal with these with implementation
care (make sure we fully understand the spec)

The Problem of Evasion, con’t

Some evasions exploit deviation from the spec

— E.g., double-escapes for SQL injection:
%25%32%37 = %27 = '

Some can exploit more fundamental ambiguities:

— Problem grows as monitoring viewpoint increasingly
removed from ultimate endpoints

 Lack of end-to-end visibility

Particularly acute for network monitoring

Consider detecting occurrences of the string
“root” inside a network connection ...

— We get a copy of each packet
— How hard can it be?

Detecting “root”: Attempt #1

Method: scan each packet for r’, ‘o', ‘o', ‘t’

Perhaps using Boyer-Moore, Aho-Corasick, Bloom filters ...

1 lllllllllllrootlllllllllllllllllllllll

Are we done?

Oops: TCP doesn’t preserve text boundaries

2

lllllllllllro otlllllllllllllllllllllll

Fix?

Detecting “root”: Attempt #2

. Okay: remember match from end of previous packet

2

llllllllll!lro otllllllllllllllllllllllll

When 2nd packet arrives, continue working on the match

- Now we’re managing state :-(
Are we done?

Oops: IP doesn’t guarantee in-order arrival

2

|
otllllllllllllllllll‘llll' i lll.lllllllro

Detecting “root”: Attempt #3

Fix?

We need to reassemble the entire TCP bytestream
— Match sequence numbers

— Buffer packets with later data (above a sequence “hole”)
Issues”?

— Potentially requires a lot of state

— Plus: attacker can cause us to exhaust state by sending
lots of data above a sequence hole

But at least we're done, right”?

Sender / Attacker

Full TCP Reassembly is Not Enough

seq=1, TTL=22 _ I
seq=1(TTL=16 i 9
v \:J /\
seq=2, TTL=16 J\ Packet discardgd in transit due
T to TTL hop count expirin
seq=2, TTL=22 i P ping
Q » O
seq=3, TTL=16 i v
seq=3, TTL=22 O 5
seq=4, TTL=22 O N
o] sea=4, TTL=16 i v
v
rice? roce? rict? roct?
riot? mr%mm
nice? qﬂcmmnf-’?
\nlot'? noot? nioe? nooe?
NIDS /

IETNEREN

Inconsistent TCP Retransmissions

o Fix?
« |dea: NIDS can alert upon seeing a retransmission
inconsistency, as surely it reflects someone up to no good

« This doesn’t work: TCP retransmissions broken in this
fashion occur in live traffic
— Rare (a few a day at ICSI)
— But real evasions much rarer still (Base Rate Fallacy)
=> This is a general problem with alerting on such ambiguities

» |dea: if NIDS sees such a connection, kill it
— Works for this case, since benign instance is already fatally broken
— But for other evasions, such actions have collateral damage
 ldea: rewrite traffic to remove ambiguities
— Works for network- & transport-layer ambiguities
— But must operate in-line and at line speed

Forensics

Vital complement to detecting attacks:
figuring out iIn wake of
successful attack

This entails access to rich/extensive logs
— Plus tools for analyzing/understanding them
— (Ala’ Project #2!)

It also entails looking for patterns and
understanding the implications of
structure seen in activity

Consider these actual emails from
operational secuirity ...

Emails omitted from on-line notes

