#### Viruses & Worms

#### CS 161: Computer Security Prof. Vern Paxson

#### TAs: Devdatta Akhawe, Mobin Javed & Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/

April 19, 2011

#### Announcements

- Matthias out for at least this coming week :-( – Note, his sections are still being held!
- HKN reviewing this Thursday, 12:15PM
- Project #2 out today, due 11:59PM Thu May 5
- Course Summary lecture?
  - Comprehensive overview of the material we've covered
  - For sure works best if you take advantage of the opportunity to ask questions ...
    - ... including sending them in advance

## **Malware That Propagates**

 Virus = code that propagates (replicates) across systems by arranging to have itself eventually executed

- Generally infects by altering stored code

- Worm = code that self-propagates/replicates across systems by arranging to have itself immediately executed
  - Generally infects by altering running code
  - No user intervention required

## The Problem of Viruses

- Virus = code that replicates
  - Instances opportunistically create new addl. instances
  - Goal of replication: install code on additional systems
- Opportunistic = code will eventually execute
  - Generally due to user action
    - Running an app, booting their system, opening an attachment
- Separate notions for a virus: how it propagates vs. what else it does when executed (payload)
- General infection strategy: find some code lying around, alter it to include the virus
- Have been around for decades ...
  - ... resulting arms race has heavily influenced evolution of modern malware



## Propagation

- When virus runs, it looks for an opportunity to infect additional systems
- One approach: look for USB-attached thumb drive, alter any executables it holds to include the virus
  - Strategy: if drive later attached to another system & altered executable runs, it locates and infects executables on new system's hard drive handy

*autorun* is handy here!

- Or: when user sends email w/ attachment, virus alters attachment to add a copy of itself
  - Works for attachment types that include programmability
  - E.g., Word documents (macros), PDFs (Javascript)
  - Virus can also send out such email proactively, using user's address book + enticing subject ("I Love You")



Original program instructions can be:

- Application the user runs
- Run-time library / routines resident in memory
- Disk blocks used to boot OS
- Autorun file on USB device

Many variants are possible, and of course can combine techniques

# Payload

- Besides propagating, what else can the virus do when executing?
  - Pretty much anything
    - Payload is decoupled from propagation
    - Only subject to permissions under which it runs
- Examples:
  - Brag or exhort (pop up a message)
  - Trash files (just to be nasty)
  - Damage hardware (!)
  - Keylogging
  - Encrypt files
    - "Ransomware"
- Possibly delayed until condition occurs
  - "time bomb" / "logic bomb"

## **Detecting Viruses**

- Signature-based detection
  - Look for bytes corresponding to injected virus code
  - High utility due to replicating nature
    - If you capture a virus V on one system, by its nature the virus will be trying to infect many other systems
    - Can protect those other systems by installing recognizer for V
- Drove development of multi-billion \$\$ AV industry (AV = "antivirus")
  - So many endemic viruses that detecting well-known ones becomes a "checklist item" for security audits
- Using signature-based detection also has de facto utility for (glib) marketing
  - Companies compete on number of signatures ...
    - ... rather than their quality (harder for customer to assess)



Virustotal is a service that analyzes suspicious files and URLs and facilitates the quick detection of viruses, worms, trojans, and all kinds of malware detected by antivirus engines. More information...



#### Compact

#### Print results 🔒

| Antivirus     | Version       | Last Update | Result                       |
|---------------|---------------|-------------|------------------------------|
| AhnLab-V3     | 2011.04.19.01 | 2011.04.19  | Dropper/Cve-2011-0611        |
| AntiVir       | 7.11.6.177    | 2011.04.19  | EXP/CVE-2011-0611            |
| Antiy-AVL     | 2.0.3.7       | 2011.04.18  | Exploit/SWF.CVE-2011-0611    |
| Avast         | 4.8.1351.0    | 2011.04.18  | SWF:CVE-2011-0609-C          |
| Avast5        | 5.0.677.0     | 2011.04.18  | SWF:CVE-2011-0609-C          |
| AVG           | 10.0.0.1190   | 2011.04.18  | -                            |
| BitDefender   | 7.2           | 2011.04.19  | -                            |
| CAT-QuickHeal | 11.00         | 2011.04.19  | -                            |
| ClamAV        | 0.97.0.0      | 2011.04.19  | -                            |
| Commtouch     | 5.3.2.6       | 2011.04.19  | MSWord/Dropper.B!Camelot     |
| Comodo        | 8396          | 2011.04.19  | UnclassifiedMalware          |
| DrWeb         | 5.0.2.03300   | 2011.04.19  | Exploit.Wordbo.12            |
| Emsisoft      | 5.1.0.5       | 2011.04.19  | Exploit.SWF.CVE-2011-0611!IK |

#### Virus Writer / AV Arms Race

 If you are a virus writer and your beautiful new creations don't get very far because each time you write one, the AV companies quickly push out a signature for it ....

– .... What are you going to do?

- Need to keep changing your viruses ...
  - … or at least changing their appearance!
- Writing new viruses by hand takes a lot of effort
- How can you mechanize the creation of new instances of your viruses ...
  - ... such that whenever your virus propagates, what it injects as a copy of itself looks different?

## **Polymorphic Code**

- We've already seen technology for creating a representation of some data that appears completely unrelated to the original data: encryption!
- Idea: every time your virus propagates, it inserts a newly encrypted copy of itself
  - Clearly, encryption needs to vary
    - Either by using a different key each time
    - Or by including some random initial padding (like an IV)
  - Note: weak (but simple/fast) crypto algorithm works fine
    - No need for truly strong encryption, just obfuscation
- When injected code runs, it decrypts itself to obtain the original functionality

Virus

**Original Program Instructions** 

Instead of this ...





Virus has *this* initial structure

When executed, decryptor applies key to decrypt the glob ...

... and jumps to the decrypted code once stored in memory

## **Polymorphic Propagation**



Once running, virus uses an *encryptor* with a new key to propagate

New virus instance bears little resemblance to original

# Arms Race: Polymorphic Code

- Given polymorphism, how might we then detect viruses?
- Idea #1: use narrow sig. that targets decryptor – Issues?
  - Less code to match against  $\Rightarrow$  more false positives
  - Virus writer spreads decryptor across existing code
- Idea #2: execute (or statically analyze) suspect code to see if it decrypts!
  - Issues?
    - Legitimate "packers" perform similar operations (decompression)
    - How long do you let the new code execute?
      - If decryptor only acts after lengthy legit execution, difficult to spot
- Virus-writer countermeasures?

### Metamorphic Code

- Idea: every time the virus propagates, generate semantically different version of it!
  - Different semantics only at immediate level of execution; higher-level semantics remain same
- How could you do this?
- Include with the virus a code rewriter:
  - Inspects its own code, generates random variant, e.g.:
    - Renumber registers
    - Change order of conditional code
    - Reorder operations not dependent on one another
    - Replace one low-level algorithm with another
    - Remove some do-nothing padding and replace with different donothing padding
      - Can be very complex, legit code ... if it's never called!

#### **Polymorphic Code In Action**



Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

#### **Metamorphic Code In Action**



Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

## **Detecting Metamorphic Viruses?**

- Need to analyze execution behavior
  - Shift from syntax (appearance of instructions) to semantics (effect of instructions)
- Two stages: (1) AV company analyzes new virus to find behaviorial signature, (2) AV software on end system analyzes suspect code to test for match to signature
- What countermeasures will the virus writer take?
  - Delay analysis by taking a long time to manifest behavior
    - Long time = await particular condition, or even simply clock time
  - Detect that execution occurs in an analyzed environment and if so behave differently
    - E.g., test whether running inside a debugger, or in a Virtual Machine
- Counter-countermeasure?

AV analysis looks for these tactics and skips over them

• Note: attacker has edge as AV products supply an oracle

#### How Much Malware Is Out There?

- A final consideration re polymorphism and metamorphism: presence can lead to mis-counting a single virus outbreak as instead reflecting 1000s of seemingly different viruses
  - Thus take care in interpreting vendor statistics on malcode varieties
  - (Also note: public perception that many varieties exist is in the vendors' own interest)



## **Infection Cleanup**

- Once malware detected on a system, how do we get rid of it?
- May require restoring/repairing many files
  - This is part of what AV companies sell: per-specimen disinfection procedures
- What about if malware executed with administrator privileges?
  - "nuke the entire site from orbit. It's the only way to be sure" ALIENS

- i.e., rebuild system from original media + data backups

• If we have complete source code for system, we could rebuild from that instead, right?

#### The Perils of Rebuilding From Source

- If we have complete source code for system, we could rebuild from that instead, right?
- Suppose forensic analysis shows that virus introduced a backdoor in /bin/login executable
  - (Note: this threat isn't specific to viruses; applies to any malware)
- Cleanup procedure: rebuild /bin/login from source ...





**No** amount of careful source-code scrutiny can prevent this problem. And if the *hardware* has a back door ...

*Reflections on Trusting Trust* Turing-Award Lecture, Ken Thompson, 1983

#### Worms

## The Problem of Worms

• Virus = code that propagates (replicates) across systems by arranging to be eventually executed

- Generally infects by altering stored code

- Worm = code that self-propagates/replicates across systems by arranging to have itself immediately executed
  - Generally infects by altering or initiating *running code*
  - No user intervention required
- Like with viruses, for worms we can separate out propagation from payload
- Propagation includes notions of *targeting* & *exploit* 
  - How does the worm **find** new prospective victims?
  - How does worm get code to **automatically run**?

## **Studying Worms**

- Internet-scale events
  - Surprising dynamics / emergent behavior
  - Hard problem of attribution (who launched it)
- Modeling propagation mathematically
- Evolution / ecosystem
  - Shifting perspectives on nature of problem
  - Remanence
- "Better" worms
- Thinking about defenses
  - Including "white worms"
- Mostly illustrated from a historical perspective ...
  - Details/dates/names for the most part not important
    - Other than Morris Worm, Code Red, and Slammer

#### **The Arrival of Internet Worms**

- Internet worms date to Nov 2, 1988 the Morris Worm
   Way ahead of its time
- Modern Era begins Jul 13, 2001 with release of initial version of Code Red
- Exploited known buffer overflow in Microsoft IIS Web servers
  - On by default in many systems
  - Vulnerability & fix announced previous month
- Payload #1: web site defacement
  - HELLO! Welcome to http://www.worm.com! Hacked By Chinese!
  - Only done if language setting = English





#### Code Red of Jul 13 2001, con't

- Payload #2: check day-of-the-month and ...
  - 1<sup>st</sup> through 20<sup>th</sup> of each month: spread
  - ... 20<sup>th</sup> through end of each month: attack
    - Flooding attack against 198.137.240.91 ...
    - ... i.e., www.whitehouse.gov
- Spread: via *random scanning* of 32-bit IP address space
  - Generate pseudo-random 32-bit number; try connecting to it; if successful, try infecting it; repeat
  - Very common (but not fundamental) worm technique
- Each worm uses same random number seed
  - How well does the worm spread?

#### Code Red, con't

- Revision released July 19, 2001.
- White House responds to threat of flooding attack by changing the address of www.whitehouse.gov
- Causes Code Red to die for date ≥ 20<sup>th</sup> of the month due to failure of TCP connection to establish.
  - Author didn't carefully test their code buggy!
- But: this time random number generator correctly seeded. Bingo!

#### Growth of Code Red Worm

