
Worms & Botnets

CS 161: Computer Security
Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/

April 21, 2011

Announcements

• HKN reviewing today, 12:15PM

• Final exam will be in F295 Haas
– This is not Haas Pavilion!
– Haas School of Business, east side of campus near

Gayley

• Course Summary lecture
– For sure works best if you take advantage of the

opportunity to ask questions …
• … including sending them in advance

Large-Scale Malware
• Worm = code that self-propagates/replicates

across systems by arranging to have itself
immediately executed
– Generally infects by altering running code
– No user intervention required

• Botnet = set of compromised machines (“bots”)
under a common command-and-control (C&C)
– Attacker might use a worm to get the bots, or other

techniques; orthogonal to bot’s use in botnet

The worm
dies off
globally!

Measurement
artifacts

Number of new hosts
probing 80/tcp as seen
at LBNL monitor of
130K Internet addresses

Modeling Worm Spread

• Worm-spread often well described as infectious epidemic
– Classic SI model: homogeneous random contacts

• SI = Susceptible-Infectible

• Model parameters:
– N: population size
– S(t): susceptible hosts at time t.
– I(t): infected hosts at time t.
– β: contact rate

• How many population members each infected host communicates with per
unit time

• E.g., if host scans 10 Internet addresses per unit time, and 2% of Internet
addresses run a vulnerable server, then β = 0.2

• Auxiliary parameters reflecting the relative proportion of
infected/susceptible hosts
– s(t) = S(t)/N i(t) = I(t)/N s(t) + i(t) = 1

N = S(t) + I(t)
S(0) = I(0) = N/2

Computing How An Epidemic Progresses

• In continuous time:

!

dI
dt

= "# I # S
N

Increase in
infectibles
per unit time

Total attempted
contacts per
unit time

Proportion of
contacts expected
to succeed

• Rewriting by using i(t) = I(t)/N, S = N - I:

!

di
dt

= "i(1# i) ⇒

!

i(t) =
e"t

1+ e"t
Fraction
infected grows
as a logistic

Fitting the Model to Code Red

Exponential
initial growth

Growth slows as
it becomes harder
to find new victims!

Spread of Code Red, con’t

• Recall that # of new infections
scales with contact rate β

• For a scanning worm, β increases with N
– Larger populations infected more quickly!

o More likely that a given scan finds a population member

• Large-scale monitoring finds 359,104 systems
infected with Code Red on July 19
– Worm got them in 13 hours

• That night (⇒ 20th), worm dies due to DoS bug
• What happens on August 1st?

!

dI
dt

= "# I # S
N

(Again from LBNL monitoring)

Activity starts a bit early
due to systems with
inaccurate clocks!
This is what seeded the
reinfection!

Secondary peak
due to home
systems coming
on in the evening

Reinfection about
1/2 as big as original

Code Red 2

• Released August 4, 2001 (3 days later!)
• Exploits same IIS vulnerability
• String inside the code: “Code Red 2”

– But in fact completely different code base.
• Payload: a root backdoor, resilient to reboots.
• Bug: crashes NT, only works on Win2K.
• Kills original Code Red.
• Localized scanning: prefers nearby

addresses.
• Safety valve: programmed to die Oct 1, 2001.

Striving for Greater Virulence: Nimda

• Released September, 2001.
• Multi-mode spreading:

– attack IIS servers like Code Red & Code Red 2
– email itself to address book as a virus
– copy itself across open network shares
– modify Web pages on infected servers with

browser exploit
– scan for Code Red 2 backdoors (!)

⇒ Worms form an ecosystem!

• Leaped across firewalls
– Ravaged sites that lacked “institutional antibodies”

Note: in some ways
a virus, in some
ways a worm.

Code Red 2 kills
off Code Red 1

Code Red 2 settles
into weekly pattern

Nimda enters the
ecosystem

Code Red 2 dies off
as programmed

CR 1
returns
thanks
to bad
clocks

Code Red 2 dies off
as programmed

Nimda hums along,
slowly cleaned up

With its predator
gone, Code Red 1
comes back!, still
exhibiting monthly
pattern

Life Just Before Slammer

Life Just After Slammer

Going Fast: Slammer

• Slammer exploited connectionless UDP
service, rather than connection-oriented TCP

• Entire worm fit in a single packet!
⇒ When scanning, worm could “fire and forget”

 Stateless!

• Worm infected 75,000+ hosts in 10 minutes
(despite broken random number generator).

• At its peak, doubled every 8.5 seconds

The Usual Logistic Growth

Slammer’s Growth
What could have
caused growth to
deviate from the
model?

Hint: at this point the
worm is generating
55,000,000 scans/sec

Answer: the Internet ran
out of carrying capacity!
(Thus, β decreased.)
Access links used by
worm completely clogged.
Caused major collateral
damage.

Further Worm Developments
• Malicious payloads (disk-trashing)
• Global outbreaks within 24 hours of

vulnerability disclosure
• “Server” exploited for infection is a NIDS
• Single outbreak of > 15 million infectees
• “Counterworm” released to clean up original

worm …
– … oh and install a root backdoor

• DoS’ing Windows Update as a worm spreads
• Worms that use Google to search for victims

Stuxnet

• Discovered July 2010. (Released: Mar 2010?)
• Multi-mode spreading:

– Initially spreads via USB (virus-like)
– Once inside a network, quickly spreads internally

using Windows RPC
• Kill switch: programmed to die June 24, 2012
• Targeted SCADA systems

– Used for industrial control systems, like
manufacturing, power plants

• Symantec: infections geographically clustered
– Iran: 59%; Indonesia: 18%; India: 8%

Stuxnet, con’t

• Used four Zero Days
– Unprecedented expense on the part of the author

• “Rootkit” for hiding infection based on installing
Windows drivers with valid digital signatures
– Attacker stole private keys for certificates from two

companies in Taiwan
• Payload: do nothing …

– … unless attached to particular models of frequency
converter drives operating at 807-1210Hz

– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing

enriched Uranium for nuclear weapons

Stuxnet, con’t

• Payload: do nothing …
– … unless attached to particular models of frequency

converter drives operating at 807-1210Hz
– … like those made in Iran (and Finland) …
– … and used to operate centrifuges for producing

enriched Uranium for nuclear weapons
• For these, worm would slowly increase drive

frequency to 1410Hz …
– … enough to cause centrifuge to fly apart …
– … while sending out fake readings from control

system indicating everything was okay …
• … and then drop it back to normal range

Worm Take-Aways
• Potentially enormous reach/damage

⇒ Weapon
• Hard to get right
• Emergent behavior / surprising dynamics
• Institutional antibodies
• Remanence: worms stick around

– E.g. Nimda & Slammer still seen in 2011!
• Propagation faster than human response
• What about fighting a worm using a worm?

– “White worm” spreads to disinfect/patch
– Experience shows: likely not to behave predictably!
– Additional issues: legality, collateral damage, target worm

having already patched so white worm can’t access victim

Botnets

Botnets
• Collection of compromised machines (bots) under

(unified) control of an attacker (botmaster)
• Method of compromise decoupled from method of

control
– Launch a worm / virus / drive-by infection / etc.

• Upon infection, new bot “phones home” to
rendezvous w/ botnet command-and-control (C&C)

• Lots of ways to architect C&C:
– Star topology; hierarchical; peer-to-peer
– Encrypted/stealthy communication

• Botmaster uses C&C to push out commands and
updates

Fighting Bots / Botnets
• How can we defend against bots / botnets?
• Approach #1: prevent the initial bot infection

– Because the infection is decoupled from bot’s
participation in the botnet, this is equivalent to preventing
malware infections in general …. HARD

• Take down the C&C master server
– Find its IP address, get associated ISP to pull plug

• Botmaster countermeasures?
– Counter #1: keep moving around the master server

• Bots resolve a domain name to find it
• Rapidly alter address associated w/ name (“fast flux”)

– Counter #2: buy off the ISP …

Termed
Bullet-proof hosting

