Wagner C5 161

Spring 2014 Computer Security Homework 1

Due: Tuesday, February 18, at 11:59pm

Instructions. This homework is due Tuesday, February 18, at 11:59pm. It must be sub-
mitted electronically via Pandagrader (and not in person, in the drop box, by email, or any
other method). This assignment must be done on your own.

Please put your answer to each problem on its own page, in the order that the problems
appear. For instance, if your answer to every problem fits on a single page, your solution
will be organized as follows:

page 1: your solution to problem 1
page 2: your solution to problem 2
page 3: your solution to problem 3
page 4: your solution to problem 4
page 5: your solution to problem 5
page 6: your optional feedback (“problem 67)

If your solution to problems 4 and 5 both take up two pages, your solution would be organized
as follows:

page 1: your solution to problem 1

page 2: your solution to problem 2

page 3: your solution to problem 3

page 4: first page of your solution to problem 4
page 5: second page of your solution to problem 4
page 6: first page of your solution to problem 5
page 7: second page of your solution to problem 5
page 8: your optional feedback (“problem 67)

Scan your solution to a PDF—or, write it electronically and save it as a PDF. Then, upload
it to Pandagrader.

Page 1 of 8

Problem 1 Reasoning about code
Consider the following C code:

void delescapes(char *s, int n) {
int i=0, j=0;
while (j < n) {
if (s(j] == "%") {

J=j+3;

} else {
s[i] = s[j];
i=itl; j=j+1;

+

(15 points)

Your job is to figure out the conditions under which delescapes() is memory-safe, and
then prove it. Fill in the blanks in the four spots shown below with a precondition and
three invariants, so that: (a) each invariant is guaranteed to be true whenever that point
in the code is reached, assuming that all of delescapes()’s callers respect the precon-
dition that you identified, and (b) your invariants suffice to prove that delescapes() is
memory-safe, assuming that it is called with an argument that satisfies the precondition

that you identified.

/* Requires:
void delescapes(char *s, int n) {
int i=0, j=0;
while (j < n) {

/* ________ (2) */
if (s[j1 == %) {
Jj=j+3;
/* o __ (3) */
} else {
s[i] = s[j];
i=i+l; j=j+1;
/* o ___ (4) */
}

}
On your solution, write your answer to each of the parts below.

(a) What did you write for the precondition, at the spot marked (1)7

)
(b) What invariant did you fill in, at the spot marked (2)?
(¢) What invariant did you fill in, at the spot marked (3)?
)

(d) What invariant did you fill in, at the spot marked (4)?

Homework 1 Page 2 of 8

CS 161 — Sp 14

Problem 2 Is it vulnerable? (20 points)
For each code snippet below, determine whether it is contains a memory-safety bug or
not, then write either “buggy” or “not buggy” on your answer depending on whether
it contains a memory-safety bug or not. If you wrote “buggy”, explain the bug, state
which line number(s) contain the bug, and describe an input that would trigger the bug.
Assume the inputs to these functions satisfy their preconditions (as documented by the
Requires: clause) but are otherwise under adversarial control.

(a) /* Escapes all newlines in the input string, replacing them with "\n".
/* Requires: p != NULL; p is a valid ’\0’-terminated string */
void escape(char *p) {

while (xp != ’\0?)

switch (*p) {

case ’\n’:

memmove (p+2, p+1l, strlen(p));

*xpt+ = A\ ; xpt+ = 'n’;

break;
default:

p++;

I

O 00 NO O W N+

11: }

(b) /* Reverses a string. */
/* Requires: p != NULL; p is a valid ’\0’-terminated string */
int strrev(char *p) {
char *q = p;
if (4p == \0’)
return;
while (xq != ’\0?)
qt+;
Q=
while (p < @) {
char t;
t = *p; *p = *q; *q = t;
pt+; Q=3

©O© 00 NO O WN =

e
_ O .-

=
w N
(-

© o}

struct triple { unsigned int a;
unsigned int b;
int c; };
/* Requires: if p != NULL, then size(p) >= sizeof (unsigned int)*160 */
int f(int i, char #*p, int data) {
struct triple arr[20];
char buf[160];
if (((i<0) || (i>20)) && p '= NULL) {

—
@)
SN—
w N -

~N O O

Homework 1 Page 3 of 8 CS 161 — Sp 14

8: memcpy (buf, p, sizeof(unsigned int)*160);

9: } else {
10: arr[i].b = data;
11: arr[i]l.c = data;
12: }
13: }
(d) 1: /* Information about the current CD. */
2: struct cd {
3: int numtracks; /* The number of tracks on this disc. */
4. int tracklen[16]; /* The length of each track on the disc, in seconds. *,
5: void (*notify) (struct cd *); /* Call this whenever the CD info changes. :
6: I;
7:
8: struct cd *curcd = makestructcd();
9:
10: /* Update the length of track number ’track’. */
11: void update_cdinfo(int track, int newtracklen) {
12: if (track > 16)
13: return;
14: curcd->tracklen[track] = newtracklen;
15: (curcd->notify) (curcd);
16: }

Don’t worry about makestructcd(); it just allocates and initializes a struct cd.
Assume the adversary can arrange for update_cdinfo() to be called with whatever
values of track and newtracklen he likes (those values may have been read directly
off the CD, for instance).

Problem 3 Name the security principle (20 points)
For each part, name the security principle that was violated, and give a one- or two-
sentence justification of how the security principle applies. If more than one of the
security principles we discussed are applicable, pick the best answer (the principle that
is most directly applicable).

(a) BankOBits is a local bank that offers its customers access to a number of conve-
niently located ATMs. Normally, when a customer inserts his/her ATM card into
a BankOBits ATM, the ATM will contact the BankOBits central server to validate
the ATM card inserted into it and check that the corresponding account has suf-
ficient funds before allowing the user to withdraw money. However, if the server
does not respond, the network connection is down, or something else goes wrong
with this query, the BankOBits ATM will assume all is well, allow the customer to
withdraw up to $300, keep a record of the transaction, and upload that informa-
tion to the BankOBits server whenever connectivity is restored. As a result of this
design decision, a gang of criminals are able to steal from the bank by cutting the
network connection on BankOBits ATMs and withdrawing $300 from them using
a fake ATM card.

Homework 1 Page 4 of 8 CS 161 — Sp 14

(b) David Wagner once heard about a kiosk at one airport that let you access the
web, for a fee. To use the kiosk, you had to enter your credit card information
at a welcome screen before the kiosk would give you access to a web browser.
However, some hacker discovered that if you press F1 to invoke the “help” screen,
the Windows help subsystem would pop up a window with generic help information
about the login screen. The help text happened to contain a link to an external
web site with more help information, and if you click on that link, the kiosk would
open the Internet Explorer web browser to display that web page. At that point,
one could change the URL in the Internet Explorer address bar and gain full access
to the web, without paying.

(c¢) One of the most widely-deployed home security systems in the country contains a
feature designed to help homeowners who are caught by an attacker or robber and
are forced to disarm the system. The homeowner can enter a duress code, a special
combination that appears to disable the alarm, while actually sending an alert to
the alarm company’s monitoring station. The monitoring station then contacts law
enforcement, though it can take some time for them to arrive. As a convenience
to its customers, one major national alarm company, responsible for installing and
configuring security systems, sets the duress code to be 2-5-8-0, the four numbers
that run down the middle of the keyboard. It does not, however, document this
policy in any publicly-available user manuals. Criminals discover this standard
duress code, rendering the duress code ineffective.

(d) SuperFlashlight is an app for Android that lets a user turn her phone into a rudi-
mentary light source by displaying a blank white screen at maximum brightness.
Android requires the app to declare what permissions it needs. SuperFlashlight
asks for the following permissions: storage, system tools (to prevent the phone
from sleeping), location (GPS), phone call state, send SMS messages, read your
contacts, and full network access. It is later discovered that one of the ad libraries
used by SuperFlashlight is vulnerable. Criminals exploit the vulnerability to take
control of users’ SuperFlashlight app and send premium SMS messages, making a
load of money.

Problem 4 Biometrics and Passwords (15 points)
Biometric authentication schemes often produce a “confidence” value that trades off
between “false positive” and “false negative” errors. A “false positive” is when the
system accepts someone when it should not have; a “false negative” is when the system
doesn’t accept someone it should have. A false negative prevents an authorized user
from logging in; a false positive allows an unauthorized user to access the system.

Password authentication tends to be much more “black and white”. If you mis-type
even a single letter when entering your password, your login will be rejected.

(a) How might you modify standard password authentication to afford a sort of “con-
fidence” level, in light of the potential for users to inadvertently mis-type part of
their password?

(b) What effects would your modification (in part (a)) have on the security of password

Homework 1 Page 5 of 8 CS 161 — Sp 14

authentication?

(¢) One simplistic model for how users select passwords is that there is some universal
dictionary of 22° possible passwords, and each user randomly picks a password
by choosing uniformly at random from this dictionary.! Assume that all of the
passwords in this dictionary are 10 characters long, and that people have a 1%
error rate per character they type, i.e., each character they type independently has
a 0.01 probability of being mis-typed. Suppose that we want a false negative rate
that is below 0.5%, i.e., below 0.005. Describe what specific parameters your scheme
should use, and list the false positive rate your scheme will have at this parameter
setting, assuming the attacker gets to make one try at guessing the password. To
simplify your calculation, assume that every pair of passwords in the dictionary
differ in at least 3 positions.

Problem 5 Return-Oriented Programming (ROP) (30 points)
In discussion section you learned how to bypass a non-executable stack via arc injection,
an attack which introduces new data that existing instructions operate on. In other
words, compared to a classic buffer overflow where the attacker provides the malicious
instructions (typically shellcode), arc injection “recycles” existing ones.

Return-oriented programming (ROP) takes arc injection to the extreme. In a nutshell,
a ROP exploit is built out of many pre-existing gadgets, which are small instruction
sequences ending in a ret instruction. The attacker looks for gadgets in executable
segments (e.g., .text) and stitches them together into a working program—much like a
ransom note.

Recall that ret semantically behaves like popl %eip, which takes the top-most stack
element and writes it into the program counter. After the attacker has transferred control
flow into a specific gadget, the execution will eventually end in another ret. Due to the
previous ret, %esp now points to one element higher in the stack. The current gadget’s
ret will thus cause that element to be the next address to load into %eip. This style of
executing can continue for quite a while and depends on how the attacker prepared the
stack.

(a) We begin by chaining gadgets to perform a desired computation. To do so, suppose
that earlier efforts have already done the grunt work of finding usable gadgets:

Oxlegdface ,441 $42,%ecx
ret

0xleg4£00d movl %$ecx,%eax

ret

Oxleg4dead

pop %edx
ret

Oxleg4cafe | xorl %ecx,%ecx
ret

text Oxlegdbeef xchg %eax,%ecx
ret

IThis model is pretty crude, but let’s run with it, for purposes of this homework question.

Homework 1 Page 6 of 8 CS 161 — Sp 14

To get the hang of how ROP exploits work, the first step is for you to glue the
gadgets together into a working program that assigns the register %eax the value
42. Ignoring the ret instruction, write down the sequence of instructions that can
achieve this task by cherry-picking from the gadgets above.

(b) The next step involves performing the computation in a return-oriented way. To
this end, consider a program vulnerable to a stack-based buffer overflow that is just
about to execute the function epilogue, that is, right before the leave instruction.
Assume that you can overflow the entire local buffer plus everything higher up
the stack, i.e., saved frame pointer, return instruction pointer, and arbitrarily far
beyond.

How would you set up the stack to implement the computation from part (a)? Use
the template below as orientation to figure out how to insert the gadget addresses
such that the program executes (in the correct order) the gadgets you identified
in part (a). You can assume cells labeled from A to Z, although you will not need
nearly that many.

rip

P WO 0O R A" @

buffer

A solution might look like (though this particular solution is not correct):

D: 1leg4f00d
C: legdbeef
B: legédcafe
A: legdf00d

(¢) Having developed a basic feel for return-oriented programming, it is time to perform
a real attack. Your task is to invoke the libc function system, which takes a single
string as an argument and executes it as a shell command. You scan the program
and discover that system maps to the location 0x1ffadb28 — sweet! Now you
inject data that system should eventually operate on. Your goal is to execute the
two statements in order:

1. system("gcc /tmp/foo.c")
2. system("./a.out")

You have filled a local buffer with the necessary data and know their addresses:

Homework 1 Page 7 of 8 CS 161 — Sp 14

0x1ffad4b28 system: pushl %ebp ; Prologue

movl %esp, %ebp rip

» W Q0 O

movl 8 (%ebp), %eax ; Use first argument

; string and execute it \Nojtjulo
-lal/ Oxbfdecaf0
leave ; Epilogue g [\olec].
ret
olo £/
plm|t]|/
c|c|g| Oxbfdecael

Assume that system does not modify the stack and only executes the shell command
passed to it as a parameter. Write down the cell values as in part (b), again assuming
cells available from A to Z.

(d) You found that your exploit worked well, but now you realize that you should
cover your tracks after exploitation, and decide to delete the source and generated
executable.

1. system("gcc /tmp/foo.c")
2. system("./a.out")
3. system("rm a.out /tmp/foo.c")

Your prepared buffer now looks as follows:

rip
\Ofc].|o
ol|lf|/|p
m|t|/
tlulo
a m Oxbfdecaf8
\Oft]u
/ Oxbfdecaf0
q|\0|c|.
o|lo|£f]|/
plm|t]|/
c|c|g| Oxbfdecael

Use the same stack template as in the previous part, but this time with the goal to
execute three times system with the arguments as shown above. Also explain why
you have to use a gadget from part (a) to properly chain the gadgets together.

Problem 6 Feedback (0 points)
Optionally, feel free to include feedback. What’s the single thing we could do to make
the class better? Or, what did you find most difficult or confusing from lectures or the
rest of class, and what would you like to see explained better?

Homework 1 Page 8 of 8 CS 161 — Sp 14

