
Malware

CS 161: Computer Security
Guest Lecturer: Paul Pearce

January 31, 2014

Slide credits: Vern Paxson

Announcements

•  David is back on Monday

•  HW0 due 11:59pm tonight
– Pick up account forms today if you haven’t!

•  C review session, Saturday 2-4pm, 306 Soda

•  Ava's discussion section Tuesday 2-3pm is
moving from 105 Latimer to 71 Evans

The Problem of Malware
•  Malware = malicious code that runs on a victim’s

system
•  How does it manage to run?

–  Buffer overflow in network-accessible vulnerable service
–  Vulnerable client (e.g. browser) connects to remote

system that sends over an attack (a driveby)
–  Social engineering: trick user into running/installing
–  “Autorun” functionality (esp. from plugging in USB device)
–  Slipped into a system component (at manufacture;

compromise of software provider; substituted via MITM)
–  Attacker with local access downloads/runs it directly

•  Might include using a “local root” exploit for privileged access

Malware Driveby Example
•  Visit http://facebook.com with your web browser

– Facebook.com serves a malicious advertisement
– Malicious advertisement exploits a bug in a browser

plugin (Buffer overrun?)
•  (Which plugin? Probably Java. Seriously. Disable

Java.)
– Malicious advertisement injects code into your

browser
– Game Over
– Actual real world example!

•  Browser Driveby is just one example.
– Another: malicious mp3’s

What Can Malware Do?
•  Pretty much anything

–  Payload generally decoupled from how manages to run
–  Only subject to permissions under which it runs

•  Examples:
–  Brag or exhort or extort (pop up a message/display)
–  Trash files (just to be nasty)
–  Damage hardware (!)
–  Launch external activity (for $?) (spam, click fraud, DoS)
–  Scan files, steal information (exfiltrate)
–  Keylogging; screen / audio / camera capture
–  Encrypt files (ransomware)
–  Other examples?

•  Possibly delayed until condition occurs
–  “time bomb” / “logic bomb”

Malware That Automatically Propagates
•  Virus = code that propagates (replicates) across

systems by arranging to have itself eventually
executed, creating a new additional instance
–  Generally infects by altering stored code

•  Worm = code that self-propagates/replicates
across systems by arranging to have itself
immediately executed (creating new addl. instance)
–  Generally infects by altering running code
–  No user intervention required
–  See supplemental slides for lots of worm examples

•  Line between these isn’t always so crisp; plus
some malware incorporates both styles

The Problem of Viruses
•  Opportunistic = code will eventually execute

–  Generally due to user action
•  Running an app, booting their system, opening an attachment

•  Separate notions: how it propagates vs. what else
it does when executed (payload)

•  General infection strategy:
find some code lying around,
alter it to include the virus

•  Have been around for decades !
– ! resulting arms race has heavily

influenced evolution of modern malware

Propagation
•  When virus runs, it looks for an opportunity to infect

additional systems
•  One approach: look for USB-attached thumb drive,

alter any executables it holds to include the virus
–  Strategy: when drive later attached to another system &

altered executable runs, it locates and infects
executables on new system’s hard drive

•  Or: when user sends email w/ attachment, virus
alters attachment to add a copy of itself
–  Works for attachment types that include programmability
–  E.g., Word documents (macros), PDFs (Javascript)
–  Virus can also send out such email proactively, using

user’s address book + enticing subject (“I Love You”)

autorun is
handy here!

Original Program Instructions
Entry point

Virus

Original Program Instructions
Entry point

1. Entry point

Original Program Instructions

Virus

2.!"#$

3.!"#$

Original program
instructions can be:

•  Application the
user runs

•  Run-time library /
routines resident
in memory

•  Disk blocks used
to boot OS

•  Autorun file on
USB device

• !

Other variants are
possible; whatever
manages to get the
virus code executed

Detecting Viruses
•  Signature-based detection

–  Look for bytes corresponding to injected virus code
–  High utility due to replicating nature

•  If you capture a virus V on one system, by its nature the virus will
be trying to infect many other systems

•  Can protect those other systems by installing recognizer for V

•  Drove development of multi-billion $$ AV industry
(AV = “antivirus”)
–  So many endemic viruses that detecting well-known

ones becomes a “checklist item” for security audits
•  Using signature-based detection also has de facto

utility for (glib) marketing
–  Companies compete on number of signatures !

•  ! rather than their quality (harder for customer to assess)

Virus Writer / AV Arms Race
•  If you are a virus writer and your beautiful new

creations don’t get very far because each time you
write one, the AV companies quickly push out a
signature for it !.
– !. What are you going to do?

•  Need to keep changing your viruses !
– ! or at least changing their appearance!

•  How can you mechanize the creation of new
instances of your viruses !
– ! so that whenever your virus propagates, what it

injects as a copy of itself looks different?
•  See bonus slides for discussion of poly and

metamorphic viruses

Repacking

How Much Malware Is Out There?
•  Repacking can lead to miscounting a single virus outbreak

as instead reflecting 1,000s of seemingly different viruses

•  Thus take care in interpreting vendor statistics on
malcode varieties
–  (Also note: public perception that many varieties exist is

in the vendors’ own interest)

Infection Cleanup
•  Once malware detected on a system, how do we get

rid of it?
•  May require restoring/repairing many files

–  This is part of what AV companies sell: per-specimen
disinfection procedures

•  What about if malware executed with adminstrator
privileges?
 “nuke the entire site from orbit. It‘s the only way to be sure”

–  i.e., rebuild system from original media + data backups
•  Malware may include a rootkit: kernel patches to

hide its presence (its existence on disk, processes)

- Aliens

Botnets
•  Collection of compromised machines (bots) under

(unified) control of an attacker (botmaster)
•  Method of compromise decoupled from method of

control
–  Launch a worm / virus / drive-by infection / project 1 / etc.

•  Upon infection, new bot “phones home” to
rendezvous w/ botnet command-and-control (C&C)

•  Lots of ways to architect C&C:
–  Star topology; hierarchical; peer-to-peer
–  Encrypted/stealthy communication

•  Botmaster uses C&C to push out commands and
updates

Example of C&C Messages

1.  Activation (report from bot to botmaster)
2.  Email address harvests
3.  Spamming instructions
4.  Delivery reports
5.  Denial-Of-Service instructions
6.  Sniffed passwords report

From the “Storm”
botnet circa 2008

Fighting Bots / Botnets
•  How can we defend against bots / botnets?

•  Defense #1: prevent the initial bot infection
–  Equivalent to preventing malware infections in general !.

HARD
•  Defense #2: Take down the C&C master server

–  Find its IP address, get associated ISP to pull plug

Fighting Bots / Botnets
•  How can we defend against bots / botnets?

•  Defense #1: prevent the initial bot infection
–  Equivalent to preventing malware infections in general !.

HARD
•  Defense #2: Take down the C&C master server

–  Find its IP address, get associated ISP to pull plug
•  Botmaster countermeasures?

–  Counter #1: keep moving around the master server
•  Bots resolve a domain name to find it (e.g. %&'()&%*+,-.*%/0)
•  Rapidly alter address associated w/ name (“fast flux”)

–  Counter #2: buy off the ISP !

Termed
Bullet-proof hosting

Fighting Bots / Botnets, con’t
•  Defense #3: Legal action

–  Use law enforcement to seize the domain names and IP
addresses used for C&C

–  This is what’s currently often used, often to good effect !

Fighting Bots / Botnets, con’t
•  Defense #3: Legal action

–  Use law enforcement to seize the domain name and IP
addresses used for C&C

– Botmaster counter-measure?
–  Each day (say), bots generate large list of possible domain

names using a Domain Generation Algorithm
•  Large = 50K, in some cases

–  Bots then try a random subset looking for a C&C server
•  Server cryptographically signs its replies, so bot can’t be duped
•  Attacker just needs to hang on to a small portion of names to

retain control over botnet

•  This is becoming state-of-the-art !
•  Counter-counter measure?

–  Behavioral signature: look for hosts that make a lot of
failed DNS lookups (research)

Addressing The Botnet Problem
•  What are our prospects for securing the Internet from the

threat of botnets? What angles can we pursue?
•  Angle #1: detection/cleanup

–  Detecting infection of individual bots hard as it’s the defend-against-
general-malware problem

–  Detecting bot doing C&C likely a losing battle as attackers improve
their sneakiness & crypto

–  Cleanup today lacks oomph:
•  Who’s responsible? ! and do they care? (externalities)
•  Landscape could greatly change with different model of liability

•  Angle #2: go after the C&C systems / botmasters
–  Difficult due to ease of Internet anonymity & complexities of

international law
•  But: a number of recent successes in this regard
•  Including some via peer pressure rather than law enforcement (McColo)

Addressing The Problem, con’t
•  Angle #3: prevention

–  Bots require installing new executables or modifying
existing ones

–  Perhaps via infection !
• ! or perhaps just via user being fooled / imprudent

•  In general, preventing malware infection is hard. Really hard
•  What if we were able to provably secure 99% of all desktops!

–  (Good luck with that)
–  Is this good enough? Are we now safe?
–  No!
–  This is an asymmetric problem

•  Defenders must defend everything
•  Attackers need only a handful of targets

Addressing The Problem, con’t
•  Better models?

•  We could lock down systems so OS prohibits user from

changing configuration
–  Sacrifices flexibility
–  How does this work for home users?
–  => Mobile (Android/iOS). Did this solve the problem?

•  Or: structure OS/browser using Privilege Separation

–  Does this solve the problem?
–  Depends on how granular the privileges are ! and how secure the

privileged components are

Summary
•  Malware = malicious code that runs on a

victim’s system
–  Infection can occur in a variety of ways

•  Some malware propagates automatically
–  Viruses
–  Worms

•  Botnet = set of compromised machines
– Botnets are a modern, persistent, and very real

threat
– Extremely hard problem

Closing Thought!

•  As long as criminals can continue to
monetize malware, the malware threat is
likely to remain
– Stay tuned for upcoming Cybercrime and

Underground Economy lectures for more

Questions?

Bonus Slides!

•  You are not responsible for the content
of these bonus slides

Polymorphic Code
•  Later you will see technology for creating a

representation of data apparently completely
unrelated to the original: encryption!

•  Idea: every time your virus propagates, it inserts a
newly encrypted copy of itself
–  Clearly, encryption needs to vary

•  Either by using a different key each time
•  Or by including some random initial padding (like an IV)

–  Note: weak (but simple/fast) crypto algorithm works fine
•  No need for truly strong encryption, just obfuscation

•  When injected code runs, it decrypts itself to obtain
the original functionality

Virus

Original Program Instructions

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

Original Program Instructions

}

"01!

Instead of this !

Virus has this
initial structure

When executed,
decryptor applies key
to decrypt the glob !

!
! and jumps to the
decrypted code once
stored in memory

D
ecryptor

Main Virus Code

K
ey

D
ecryptor

Encrypted Glob of Bits

K
ey

"01!

!
Once running, virus
uses an encryptor with
a new key to propagate

E
ncryptor

}

D
ecryptor

Different Encrypted Glob of Bits

K
ey2

!

Polymorphic Propagation

New virus instance
bears little resemblance
to original

Arms Race: Polymorphic Code
•  Given polymorphism, how might we then detect

viruses?
•  Idea #1: use narrow sig. that targets decryptor

–  Issues?
•  Less code to match against " more false positives
•  Virus writer spreads decryptor across existing code

•  Idea #2: execute (or statically analyze) suspect
code to see if it decrypts!
–  Issues?

•  Legitimate “packers” perform similar operations
(decompression)

•  How long do you let the new code execute?
–  If decryptor only acts after lengthy legit execution, difficult to spot

•  Virus-writer countermeasures?

Metamorphic Code
•  Idea: every time the virus propagates, generate

semantically different version of it!
–  Different semantics only at immediate level of execution;

higher-level semantics remain same
•  How could you do this?
•  Include with the virus a code rewriter:

–  Inspects its own code, generates random variant, e.g.:
•  Renumber registers
•  Change order of conditional code
•  Reorder operations not dependent on one another
•  Replace one low-level algorithm with another
•  Remove some do-nothing padding and replace with different do-

nothing padding (“chaff”)
–  Can be very complex, legit code ! if it’s never called!

Polymorphic Code In Action

Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

Metamorphic Code In Action

Hunting for Metamorphic, Szor & Ferrie, Symantec Corp., Virus Bulletin Conference, 2001

Detecting Metamorphic Viruses?
•  Need to analyze execution behavior

–  Shift from syntax (appearance of instructions) to
semantics (effect of instructions)

•  Two stages: (1) AV company analyzes new virus to find
behavioral signature; (2) AV software on end systems
analyze suspect code to test for match to signature

•  What countermeasures will the virus writer take?
–  Delay analysis by taking a long time to manifest behavior

•  Long time = await particular condition, or even simply clock time
–  Detect that execution occurs in an analyzed environment and if so

behave differently
•  E.g., test whether running inside a debugger, or in a Virtual Machine

•  Counter-countermeasure?
–  AV analysis looks for these tactics and skips over them

•  Note: attacker has edge as AV products supply an oracle

The Arrival of Internet Worms
•  Worms date to Nov 2, 1988 - the Morris Worm
•  Way ahead of its time
•  Employed whole suite of tricks to infect systems !

–  Multiple buffer overflows
–  Guessable passwords
–  “Debug” configuration option that provided shell access
–  Common user accounts across multiple machines

•  ! and of tricks to find victims
–  Scan local subnet
–  Machines listed in system’s network config
–  Look through user files for mention of

remote hosts

Arrival of Internet Worms, con’t
•  Modern Era began Jul 13, 2001 with

release of initial version of Code Red
•  Exploited known buffer overflow in

Microsoft IIS Web servers
– On by default in many systems
– Vulnerability & fix announced previous month

•  Payload part 1: web site defacement
2  !"##$%&'()*+,(&-+&.--/01122232+4,3*+,%&
!5*6(7&89&:.;<(=(%!

– Only done if language setting = English

Code Red of Jul 13 2001, con’t
•  Payload part 2: check day-of-the-month and !

– ! 1st through 20th of each month: spread
– ! 20th through end of each month: attack

•  Flooding attack against 198.137.240.91 !
•  ! i.e., www.whitehouse.gov

•  Spread: via random scanning of 32-bit
IP address space
–  Generate pseudo-random 32-bit number; try

connecting to it; if successful, try infecting it; repeat
–  Very common (but not fundamental) worm technique

•  Each instance used same random number seed
–  How well does the worm spread?

Linear growth rate

Code Red, con’t

•  Revision released July 19, 2001.
•  White House responds to threat of flooding

attack by changing the address of
www.whitehouse.gov

•  Causes Code Red to die for date " 20th of the
month due to failure of TCP connection to
establish.
–  Author didn’t carefully test their code - buggy!

•  But: this time random number generator
correctly seeded. Bingo!

The worm
dies off
globally!

Measurement
artifacts

Number of new hosts
probing 80/tcp as seen
at LBNL monitor of
130K Internet addresses

Modeling Worm Spread
•  Worm-spread often well described as infectious epidemic

–  Classic SI model: homogeneous random contacts
•  SI = Susceptible-Infectible

•  Model parameters:
–  N: population size
–  S(t): susceptible hosts at time t.
–  I(t): infected hosts at time t.
–  !: contact rate

•  How many population members each infected host communicates with
per unit time

•  E.g., if each infected host scans 10 Internet addresses per unit time, and 2%
of Internet addresses run a vulnerable server " ! = 0.2

•  Normalized versions reflecting relative proportion of
infected/susceptible hosts
–  s(t) = S(t)/N i(t) = I(t)/N s(t) + i(t) = 1

N = S(t) + I(t)
S(0) = I(0) = N/2

Computing How An Epidemic Progresses

•  In continuous time:

!

dI
dt

= "# I # S
N

Increase in
infectibles
per unit time

Total attempted
contacts per
unit time

Proportion of
contacts expected
to succeed

•  Rewriting by using i(t) = I(t)/N, S = N - I:

!

di
dt

= "i(1# i) "

!

i(t) =
e"t

1+ e"t
Fraction
infected grows
as a logistic

Fitting the Model to Code Red

Exponential
initial growth

Growth slows as
it becomes harder
to find new victims!

Spread of Code Red, con’t

•  Recall that # of new infections
scales with contact rate #

•  For a scanning worm, # increases with N
–  Larger populations infected more quickly!

o More likely that a given scan finds a population member

•  Large-scale monitoring finds 360K systems
infected with Code Red on July 19
–  Worm got them in 13 hours

•  That night (" 20th), worm dies due to DoS bug
•  Worm actually managed to restart itself Aug. 1

– ! and each successive month for years to come!

!

dI
dt

= "# I # S
N

Emergent behavior

Life Just Before Slammer

Life Just After Slammer

Going Fast: Slammer
•  Slammer exploited connectionless UDP

service, rather than connection-oriented TCP
•  Entire worm fit in a single packet!
" When scanning, worm could “fire and forget”

 Stateless!

•  Worm infected 75,000+ hosts in << 10 minutes
•  At its peak, doubled every 8.5 seconds

The Usual Logistic Growth

Slammer’s Growth
What could have
caused growth to
deviate from the
model?

Hint: at this point the
worm is generating
55,000,000 scans/sec

Answer: the Internet ran
out of carrying capacity!
(Thus, # decreased.)
Access links used by
worm completely clogged.
Caused major collateral
damage.

2009 - 2010

Big Worms: Conficker

2012 - 2013

Big Worms: Conficker

Stuxnet

•  Discovered July 2010. (Released: Mar 2010?)
•  Multi-mode spreading:

–  Initially spreads via USB (virus-like)
–  Once inside a network, quickly spreads internally

using Windows RPC
•  Kill switch: programmed to die June 24, 2012
•  Targeted SCADA systems

–  Used for industrial control systems, like
manufacturing, power plants

•  Symantec: infections geographically clustered
–  Iran: 59%; Indonesia: 18%; India: 8%

Stuxnet, con’t

•  Used four Zero Days
–  Unprecedented expense on the part of the author

•  “Rootkit” for hiding infection based on installing
Windows drivers with valid digital signatures
–  Attacker stole private keys for certificates from two

companies in Taiwan
•  Payload: do nothing !

– ! unless attached to particular models of frequency
converter drives operating at 807-1210Hz

– ! like those made in Iran (and Finland) !
– ! and used to operate centrifuges for producing

enriched uranium for nuclear weapons

Stuxnet, con’t

•  Payload: do nothing !
– ! unless attached to particular models of frequency

converter drives operating at 807-1210Hz
– ! like those made in Iran (and Finland) !
– ! and used to operate centrifuges for producing

enriched uranium for nuclear weapons
•  For these, worm would slowly increase drive

frequency to 1410Hz !
– ! enough to cause centrifuge to fly apart !
– ! while sending out fake readings from control

system indicating everything was okay !
•  ! and then drop it back to normal range

Worm Take-Aways
•  Potentially enormous reach/damage

"  Weapon

•  Hard to get right
•  Emergent behavior / surprising dynamics
•  Remanence: worms stick around

– E.g. Slammer still seen in 2013!

•  Propagation faster than human response

Large-Scale Malware
•  Worm = code that self-propagates/replicates

across systems by arranging to have itself
immediately executed
–  Generally infects by altering running code
–  No user intervention required

Infection Cleanup, con’t
•  If we have complete source code for system, we

could rebuild from that instead, couldn’t we?
•  No!
•  Suppose forensic analysis shows that virus

introduced a backdoor in 34-(3./5-(
executable
–  (Note: this threat isn’t specific to viruses; applies

to any malware)
•  Cleanup procedure: rebuild 34-(3./5-(from

source !
– How’s your complier doing!

Infection Cleanup, con’t
•  Cleanup procedure: rebuild 34-(3./5-(from

source !

34-(3./5-(!
source code

Compiler

34-(3./5-(
executable

Regular compilation
process of building login
binary from source code

34-(3./5-(!
source code

Compiler

34-(3./5-(
executable

Infected compiler
recognizes when it’s
compiling /bin/login
source and inserts extra
back door when seen

No problem: first step,
rebuild the compiler so
it’s uninfected

Correct compiler!
source code

 Infected Compiler

Correct compiler
executable

Reflections on Trusting Trust
Turing-Award Lecture, Ken Thompson, 1983

No amount of careful source-code
scrutiny can prevent this problem.
And if the hardware has a back door !

 Infected Compiler

 Infected Compiler

Oops - infected compiler
recognizes when it’s
compiling its own source
and inserts the infection!

Correct compiler!
source code

X

Worms can potentially
spread quickly because
they parallelize the
process of propagating/
replicating.

Same holds for viruses,
but they often spread
more slowly since
require some sort of
user action to trigger
each propagation.

Rapid Propagation

Large-Scale Malware
•  Worm = code that self-propagates/replicates

across systems by arranging to have itself
immediately executed
–  Generally infects by altering running code
–  No user intervention required

•  Propagation includes notions of targeting & exploit
–  How does the worm find new prospective victims?
–  How does worm get code to automatically run?

•  Botnet = set of compromised machines (“bots”)
under a common command-and-control (C&C)
–  Attacker might use a worm to get the bots, or other

techniques; orthogonal to bot’s use in botnet

