
Attacks on DNS!

CS 161: Computer Security
Prof. David Wagner

March 3, 2013

Today!
• Reminder: Project due tonight, 11:59pm

• Today, DNS: protocol for mapping hostnames to IP
addresses, and attacks on DNS.

DNS Overview!
• DNS translates www.google.com to 74.125.25.99

•  It’s a performance-critical distributed database.

• DNS security is critical for the web.
(Same-origin policy assumes DNS is secure.)

• Analogy: If you don’t know the answer to a question,
ask a friend for help (who may in turn refer you to a
friend of theirs, and so on).

DNS Overview!
• DNS translates www.google.com to 74.125.25.99

•  It’s a performance-critical distributed database.

• DNS security is critical for the web.
(Same-origin policy assumes DNS is secure.)

• Analogy: If you don’t know the answer to a question,
ask a friend for help (who may in turn refer you to a
friend of theirs, and so on).

• Security risks: friend might be malicious,
communication channel to friend might be insecure,
friend might be well-intentioned but misinformed

requesting host
xyz.poly.edu eecs.mit.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4
5

6
authoritative DNS server

(for ‘mit.edu’)
dns.mit.edu

7 8

TLD DNS server
(‘.edu’)

DNS Lookups via a Resolver!

Host at xyz.poly.edu
wants IP address for
eecs.mit.edu

Caching heavily
used to minimize

lookups

Security risk #1: malicious DNS server!
• Of course, if any of the DNS servers queried are

malicious, they can lie to us and fool us about the
answer to our DNS query

•  (In fact, they used to be able to fool us about the
answer to other queries, too. We’ll come back to
that.)

Security risk #2: on-path eavesdropper!
•  If attacker can eavesdrop on our traffic…

we’re hosed.

• Why? We’ll see why.

Security risk #3: off-path attacker!
•  If attacker can’t eavesdrop on our traffic, can he

inject spoofed DNS responses?

• This case is especially interesting, so we’ll look at it
in detail.

DNS Threats!
• DNS: path-critical for just about everything we do

– Maps hostnames ⇔ IP addresses
– Design only scales if we can minimize lookup traffic

o  #1 way to do so: caching
o  #2 way to do so: return not only answers to queries, but additional

info that will likely be needed shortly

• What if attacker eavesdrops on our DNS queries?
– Then similar to DHCP/TCP, can spoof responses

• Consider attackers who can’t eavesdrop - but still
aim to manipulate us via how the protocol functions

• Directly interacting w/ DNS: dig program on Unix
– Allows querying of DNS system
– Dumps each field in DNS responses

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Use Unix “dig” utility to look up IP address
(“A”) for hostname eecs.mit.edu via DNS

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

The question we asked the server

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

A 16-bit transaction identifier that enables
the DNS client (dig, in this case) to match up
the reply with its original request

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Answer” tells us the IP address associated
with eecs.mit.edu is 18.62.1.6 and we can
cache the result for 21,600 seconds

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In general, a single Resource Record (RR) like
this includes, left-to-right, a DNS name, a time-
to-live, a family (IN for our purposes - ignore),
a type (A here), and an associated value

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Authority” tells us the name servers responsible for
the answer. Each RR gives the hostname of a different
name server (“NS”) for names in mit.edu. We should
cache each record for 11,088 seconds.

If the “Answer” had been empty, then the resolver’s
next step would be to send the original query to one of
these name servers.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Additional” provides extra information to save us from
making separate lookups for it, or helps with bootstrapping.

Here, it tells us the IP addresses for the hostnames of the
name servers. We add these to our cache.

DNS Protocol!
Lightweight exchange

of query and reply
messages, both
with same message
format

Primarily uses UDP

for its transport
protocol, which is
what we’ll assume

Frequently, both

clients and servers
use port 53

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

 SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

UDP Header

DNS
Query

or
Reply

IP Header

DNS Protocol!
Lightweight exchange

of query and reply
messages, both
with same message
format

Primarily uses UDP

for its transport
protocol, which is
what we’ll assume

Frequently, both

clients and servers
use port 53

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

 SRC=53 DST=53

checksum length

16 bits 16 bits

UDP Payload

UDP Header

DNS
Query

or
Reply

IP Header

DNS Protocol, cont.!

Message header:
•  Identification: 16 bit # for

query, reply to query uses
same #

•  Along with repeating the
Question and providing
Answer(s), replies can include
“Authority” (name server
responsible for answer) and
“Additional” (info client is
likely to look up soon anyway)

•  Each Resource Record has a
Time To Live (in seconds) for
caching (not shown)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

IP Header

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What if the mit.edu server
is untrustworthy? Could
its operator steal, say, all
of our web surfing to
berkeley.edu’s main web
server?

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Let’s look at a flaw in the
original DNS design
(since fixed)

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What could happen if the mit.edu server
returns the following to us instead?

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

We’d dutifully store in our cache a mapping of
www.berkeley.edu to an IP address under
MIT’s control. (It could have been any IP
address they wanted, not just one of theirs.)

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In this case they chose to make the
mapping disappear after 30 seconds.
They could have made it persist for
weeks, or disappear even quicker.

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

How do we fix such cache poisoning?

dig eecs.mit.edu A

; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS www.berkeley.edu.

;; ADDITIONAL SECTION:
www.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless
they’re for the domain we’re looking up

E.g., looking up eecs.mit.edu ⇒ only accept
additional records from *.mit.edu	

	

No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

=

Security risk #1: malicious DNS server!
• Of course, if any of the DNS servers queried are

malicious, they can lie to us and fool us about the
answer to our DNS query…

• and they used to be able to fool us about the
answer to other queries, too, using cache
poisoning. Now fixed (phew).

Security risk #2: on-path eavesdropper!
•  If attacker can eavesdrop on our traffic…

we’re hosed.

• Why?

Security risk #2: on-path eavesdropper!
•  If attacker can eavesdrop on our traffic…

we’re hosed.

• Why? They can see the query and the 16-bit
transaction identifier, and race to send a spoofed
response to our query.

Security risk #3: off-path attacker!
•  If attacker can’t eavesdrop on our traffic, can he

inject spoofed DNS responses?

• Answer: It used to be possible, via blind spoofing.
We’ve since deployed mitigations that makes this
harder (but not totally impossible).

Blind spoofing!

•  Say we look up
mail.google.com; how can an
off-path attacker feed us a
bogus A answer before the
legitimate server replies?

•  How can such a remote
attacker even know we are
looking up mail.google.com?

...<img	
 src="http://mail.google.com"	
 …>	
 ...	

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

 Suppose, e.g., we visit a web
page under their control:

Blind spoofing!

•  Say we look up
mail.google.com; how can
an off-path attacker feed us a
bogus A answer before the
legitimate server replies?

•  How can such an attacker
even know we are looking up
mail.google.com?
Suppose, e.g., we visit a web
page under their control:

...<img	
 src="http://mail.google.com"	
 …>	
 ...	

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

This HTML snippet causes our
browser to try to fetch an image from
mail.google.com. To do that, our
browser first has to look up the IP
address associated with that name.

Blind spoofing!

So this will be k+1

They observe ID k here <img	
 src="http://badguy.com"	
 …>	

<img	
 src="http://mail.google.com"	
 …>	

Originally, identification field
incremented by 1 for each
request. How does attacker
guess it?

Once they know we’re looking
it up, they just have to guess
the Identification field and reply
before legit server.

How hard is that?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Fix?

DNS Blind Spoofing, cont.!

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and
no more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we pretty much safe?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe -
phew! ?

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

DNS Blind Spoofing (Kaminsky 2008)!
• Two key ideas:

–  Attacker can get around caching of legit replies by
generating a series of different name lookups:

–  Trick victim into looking up a domain you don’t care

about, use Additional field to spoof the domain you do

<img	
 src="http://random1.google.com"	
 …>	

<img	
 src="http://random2.google.com"	
 …>	

<img	
 src="http://random3.google.com"	
 …>	

...	

<img	
 src="http://randomN.google.com"	
 …>	

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A doesn’t	
 matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing!
For each lookup of randomk.google.com,
attacker spoofs a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A doesn’t	
 matter

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing!
For each lookup of randomk.google.com,
attacker spoofs a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
mail.google.com … but also the cached NS record for
google.com’s name server - so any future X.google.com
lookups go through the attacker’s machine

Defending Against Blind Spoofing!

Central problem: all that tells a
client they should accept a
response is that it matches the
Identification field.

With only 16 bits, it lacks
sufficient entropy: even if truly
random, the search space an
attacker must brute force is too
small.

Where can we get more
entropy? (Without requiring a
protocol change.)

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits

Defending Against Blind Spoofing!

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=53

checksum length

16 bits 16 bits For requestor to receive DNS
reply, needs both correct
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 - but not
fundamental, just convenient.

Total entropy: 16 bits

Defending Against Blind Spoofing!

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd	

checksum length

16 bits 16 bits

Total entropy: ? bits
“Fix”: client uses random
source port ⇒ attacker doesn’t
know correct dest. port to use in
reply

Defending Against Blind Spoofing!
“Fix”: client uses random
source port ⇒ attacker doesn’t
know correct dest. port to use in
reply

32 bits of entropy makes it
orders of magnitude harder for
attacker to guess all the
necessary fields and dupe victim
into accepting spoof response.

This is what primarily “secures”
DNS against blind spoofing
today.

Total entropy: 32 bits

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

SRC=53 DST=rnd	

checksum length

16 bits 16 bits

Lessons learned!

• Security risks: friend might be malicious

• Communication channel to friend might be insecure

• Friend might be well-intentioned but misinformed

Extra Material!

•  DNS threats highlight:
–  Attackers can attack opportunistically rather than

eavesdropping
o Cache poisoning only required victim to look up some name

under attacker’s control (has been fixed)
–  Attackers can often manipulate victims into vulnerable

activity
o  E.g., IMG	
 SRC in web page to force DNS lookups

–  Crucial for identifiers associated with communication
to have sufficient entropy (= a lot of bits of
unpredictability)

–  “Attacks only get better”: threats that appears
technically remote can become practical due to
unforeseen cleverness

Summary of DNS Security Issues!

Common Security Assumptions!

•  (Note, these tend to be pessimistic … but prudent)

• Attackers can interact with our systems without
particular notice
– Probing (poking at systems) may go unnoticed …
– … even if highly repetitive, leading to crashes, and easy

to detect

•  It’s easy for attackers to know general information
about their targets
– OS types, software versions, usernames, server ports, IP

addresses, usual patterns of activity, administrative
procedures

Common Assumptions!

• Attackers can obtain access to a copy of a given
system to measure and/or determine how it works

• Attackers can make energetic use of automation
– They can often find clever ways to automate

• Attackers can pull off complicated coordination
across a bunch of different elements/systems

• Attackers can bring large resources to bear if needed
– Computation, network capacity
– But they are not super-powerful (e.g., control entire ISPs)

Common Assumptions!

•  If it helps the attacker in some way, assume they
can obtain privileges
– But if the privilege gives everything away (attack becomes

trivial), then we care about unprivileged attacks

• The ability to robustly detect that an attack has
occurred does not replace desirability of preventing

•  Infrastructure machines/systems are well protected
(hard to directly take over)
– So a vulnerability that requires infrastructure compromise

is less worrisome than same vulnerability that doesn’t

Common Assumptions!

• Network routing is hard to alter … other than with
physical access near clients (e.g., “coffeeshop”)
– Such access helps fool clients to send to wrong place
– Can enable Man-in-the-Middle (MITM) attacks

• We worry about attackers who are lucky
– Since often automation/repetition can help “make luck”

• Just because a system does not have apparent
value, it may still be a target

• Attackers are undaunted by fear of getting caught

