Securing DNS:
DNSSEC

CS 161: Computer Security

Prof. David Wagner

Securing DNS Lookups

« Topic for today:
How can we ensure that when clients look up
names with DNS, they can the answers they
receive?

e But first, a diversion...

An Experiment

* Today: Active learning + peer instruction

— I’'m going to ask you to work out how to secure
DNS, on your own.

— I'll give you a series of problems. | want you to
break into groups of two, decide what you think a
solution might be, then report back to the class.

— TAs and | will circulate. Ask us for help!

— Research suggests this might be more effective
than lecturing. Let's give it a try!

* This is an experiment — | need your feedback
on whether it helps you learn.

Outsourcing Data Lookups

* Problem 1. Berkeley has a database of all
its graduates, D = {d.,, d,, ..., d,}, replicated
across many mirror sites. Given a name X,
any client should be able to query any
mirror and learn whether x & D. We don't
trust the mirrors, so if answer to query is
‘yes” (i.e., if x € D), client should receive a
proof that it can verify. If answer is
“no” (i.e., x & D), no proof is necessary.
Make performance as good as possible.

Solutions

Give to the mirror:

- Signatures: d1,Sign(H(d1)),
...,dn,Sign(H(dn))

» Signatures: d1,Sign(d1),...,dn,Sign(dn)

Outsourcing Data Lookups

* Question 2. Suppose we use your solution,
with client connecting to mirror via HTTP —
but there is a man-in-the-middle (on-path
attacker). What can attacker do, without
being detected?

A. Can spoof both “yes” (x € D) and
“no” (x & D) responses.

B. Can spoof “yes”, but can’t spoof “no”.

C. Can spoof "no”, but can’t spoof “yes”.

D. Can'’t spoof either kind of response.

Authenticating “Yes” and “No”

* Problem 3. Same as Problem 1, except
now, if answer is “no” (i.e., x & D), client
should receive a proof that it can verify.

Authenticating “Yes” and “No”

* Problem 3. Same as Problem 1, except
now, if answer is “no” (i.e., x & D), client
should receive a proof that it can verify.

Hint: Organize the elements as a binary
tree or hash table, then....

Solutions

Say D = {Alice, Bob, Jim, Xavier}.

Give to mirror:

« Sign(1, Alice), Sign(2, Bob), Sign(3, Jim),
Sign(4, Xavier)

» Sign(Alice,Bob), Sign(Bob, Jim),
Sign(Jim,Xavier)

To answer query “Doug’:

* Doug -> no, Bob, Jim, Sign(2, Bob),
Sign(3, Jim); or Doug -> no, Sign(Bob, Jim)

DNS

* Problem 4. Now Berkeley wants to protect
its DNS records; how could it do it? What
would be the advantages and
disadvantages of your solution?

DNSSEC

* Guess what — you just invented DNSSEC!

» Sign all DNS records. Signatures let you

verity answer to DNS query, without having
to trust the network or resolvers involved.

Securing DNS Lookups

 How can we ensure that when clients look up
names with DNS, they can the answers they
receive?

* |dea #1: do DNS lookups over TLS (SSL)

Securing DNS using SSL / TLS?

root DNS server (°.")
Host at xyz .poly.edu g

wants IP address for
gaia.cs.umass.edu 2
TLD DNS ser'ver'
4 du’
local DNS server n ‘\,\/_,;n (“.edu’)

(resolver) 5
dns.poly.edu

|dea: connections

{1 ’8}’ {2’3}’ {4’5} | n authoritative DNS server

and {6,7} all run (‘umass.edu’,

over SSL / TLS ‘cs.umass.edu’)
dns.cs.umass.edu

requesting host
xXyz.poly.edu @ gaia.cs.umass.edu

Securing DNS Lookups

How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

ldea #1: do DNS lookups over TLS (SSL)

— Performance: DNS is very lightweight. TLS is not.

— Caching: crucial for DNS scaling. But then how do we
keep authentication assurances?

— Security: must trust the resolver.
Object security vs. Channel security

|dea #2: make DNS results like certs

— l.e., a verifiable signature that guarantees who
generated a piece of data; signing happens off-line

Operation of DNSSEC

« DNSSEC = standardized DNS security
extensions currently being deployed

- As a resolver works its way from DNS root down
to final name server for a name, at each level it
gets a signed statement regarding the key(s)
used by the next level

- This builds up a chain of trusted keys
- Resolver has root’s key

- The final answer that the resolver receives is
signed by that level's key

- Resolver can trust it's the right key because of chain of
support from higher levels

* All keys as well as signed results are

Ordinary DNS:

www.google.com A?

Client’s

k.root-servers.net
Resolver

Ordinary DNS:

www.google.com A?

Client’s g
k.root-servers.net]
Resolver

Ordinary DNS:

www.google.com A?

Client's |+
Resolver |[com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

Ordinary DNS:

www.google.com A?

Client's |« >
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s
Resolver

A

[k.root-servers.net]

a.gtld-servers.net A 192.5.6.30

Ordinary DNS:

www.google.com A?

Client's |+
Resolver [com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

(The line above shows com. rather than .com because
technically that’s the actual name, and that’'s what the Unix
dig utility shows; but the convention is to call it “dot-com”)

Ordinary DNS.:

www.google.com A?
Client’s
Resolver

A

com. NS a.gtld-servers.net [k.root-servers_net]

Ordinary DNS:

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

The actual response includes a bunch of
NS and A records for additional . com name
servers, which we omit here for simplicity.

Ordinary DNS:

www.google.com A?

A

Client’s > o t
Resolver | |com. NS a.gtld-servers.net OOESEIVETS.ME

a.gtld-servers.net A 192.5.6.30

www.google.com A?

. , >
[Cllents] ﬁ a_gtld-servers.net]]

Resolver —

Ordinary DNS:

www.google.com A?

Client's |+
Resolver | [com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

www.google.com A?

Client's
Resolver | | google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10

a.gtld-servers.net

Ordinary DNS:

www.google.com A?

A

Client’s > o t
Resolver | |com. NS a.gtld-servers.net OOESEIVETS.ME

a.gtld-servers.net A 192.5.6.30

www.google.com A?

Client's |+
Resolver a.gtld-servers.net

Ordinary DNS:

www.google.com A"

Client's |+
Resolver | [com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30

k.root-servers.net

www.google.com A"

Client's |
Resolver | | google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10

a.gtld-servers.net

www.google.com A?

>

Client's |+
Resolver | | www.google.com. A 74.125.24.14

ns1.google.com

Ordinary DNS.:

www.google.com A?

A

Client’s i’ o t
Resolver | | com. NS a.gtld-servers.net (IOOESEIVETS.ME

a.gtld-servers.net A 192.5.6.30

www.googleéom A?

7 >

Client's |«
oo —[stageom

DNSSEC (with simplifications):

Client’s
Resolver

www.google.com A?

<

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

k.root-servers.net

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

Up through here is the same as before ...

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

This new RR (“Delegation Signer”) lists . com’s public key

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS description-of-com’s-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

The actual process of retrieving . com’'s public key
iIs complicated (actually involves multiple keys) but
for our purposes doesn’t change how things work

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

This new RR specifies a signature over another RR
... in this case, the signature covers the above DS
record, and is made using the root’s private key

DNSSEC (with simplifications):

www.google.com A?

Client's
Resolver | |com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

The resolver has the root’s public key
hardwired into it. The client only proceeds
with DNSSEC if it can validate the signature.

DNSSEC (with simplifications):

www.google.com A?

Client's <
Resolver [com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30

k.root-servers.net

com. DS com’s-public-key
com. RRSIG DS signature-of-that-
DS-record-using-root’s-key

DNSSEC (with simplifications):

www.google.com A?

Client’s g
[a.gtld-servers.net]
Resolver

)

DNSSEC (with simplifications):

www.google.com A?

Client's |+
Resolver | | google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10

a.gtld-servers.net

google.com. DS google.com’s-public-key
google.com. RRSIG DS signature-
of-that-DS-record-using-com’s-key

DNSSEC (with simplifications):

www.google.com A? .
[Client’s]4 [

Resolver

d-servers.net]

DNSSEC (with simplifications):

www.google.com A?

Client’s ’[1 |]
Resolver ns1.google.com

)

DNSSEC (with simplifications):

Client’s
Resolver

www.google.com A?

<

>

www.google.com. A 74.125.24.14

www.google.com. RRSIG A
signature-of-the-A-records-using-
google.com’s-key

ns1.google.com

DNSSEC (with simplifications):

www.google.com A?

Client's <
[ResolverJ ‘[ns1.google.com J

DNSSEC (with simplifications):

www.google.com A?

Client's <
[Resolver] ‘[ns1.google.com]

