
Securing DNS:
DNSSEC

CS 161: Computer Security
Prof. David Wagner

April 11, 2013 Special request: Please spread out!
Pair up. Each pair, sit far away from anyone else.
If you’re just arriving, sit next to someone who is
alone.

Securing DNS Lookups

•  Topic for today:
How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

•  But first, a diversion…

An Experiment

•  Today: Active learning + peer instruction
–  I’m going to ask you to work out how to secure

DNS, on your own.
–  I’ll give you a series of problems. I want you to

break into groups of two, decide what you think a
solution might be, then report back to the class.

– TAs and I will circulate. Ask us for help!
– Research suggests this might be more effective

than lecturing. Let’s give it a try!
•  This is an experiment – I need your feedback

on whether it helps you learn.

Outsourcing Data Lookups

•  Problem 1. Berkeley has a database of all
its graduates, D = {d1, d2, …, dn}, replicated
across many mirror sites. Given a name x,
any client should be able to query any
mirror and learn whether x ∈ D. We don’t
trust the mirrors, so if answer to query is
“yes” (i.e., if x ∈ D), client should receive a
proof that it can verify. If answer is
“no” (i.e., x ∉ D), no proof is necessary.
Make performance as good as possible.

Solutions

Give to the mirror:
•  Signatures: d1,Sign(H(d1)),

…,dn,Sign(H(dn))
•  Signatures: d1,Sign(d1),…,dn,Sign(dn)

Outsourcing Data Lookups

•  Question 2. Suppose we use your solution,
with client connecting to mirror via HTTP –
but there is a man-in-the-middle (on-path
attacker). What can attacker do, without
being detected?

A. Can spoof both “yes” (x ∈ D) and
 “no” (x ∉ D) responses.
B. Can spoof “yes”, but can’t spoof “no”.
C. Can spoof “no”, but can’t spoof “yes”.
D. Can’t spoof either kind of response.

Authenticating “Yes” and “No”

•  Problem 3. Same as Problem 1, except
now, if answer is “no” (i.e., x ∉ D), client
should receive a proof that it can verify.

Authenticating “Yes” and “No”

•  Problem 3. Same as Problem 1, except
now, if answer is “no” (i.e., x ∉ D), client
should receive a proof that it can verify.

Hint: Organize the elements as a binary
tree or hash table, then….

Solutions

Say D = {Alice, Bob, Jim, Xavier}.
Give to mirror:
•  Sign(1, Alice), Sign(2, Bob), Sign(3, Jim),

Sign(4, Xavier)
•  Sign(Alice,Bob), Sign(Bob, Jim),

Sign(Jim,Xavier)
To answer query “Doug”:
•  Doug -> no, Bob, Jim, Sign(2, Bob),

Sign(3, Jim); or Doug -> no, Sign(Bob, Jim)

DNS

•  Problem 4. Now Berkeley wants to protect
its DNS records; how could it do it? What
would be the advantages and
disadvantages of your solution?

DNSSEC

•  Guess what – you just invented DNSSEC!

•  Sign all DNS records. Signatures let you
verify answer to DNS query, without having
to trust the network or resolvers involved.

Securing DNS Lookups

•  How can we ensure that when clients look up
names with DNS, they can trust the answers they
receive?

•  Idea #1: do DNS lookups over TLS (SSL)

requesting host
xyz.poly.edu gaia.cs.umass.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4
5

6
authoritative DNS server

(‘umass.edu’,
‘cs.umass.edu’)

dns.cs.umass.edu

7 8

TLD DNS server
(‘.edu’)

Securing DNS using SSL / TLS?!

Host at xyz.poly.edu
wants IP address for
gaia.cs.umass.edu

Idea: connections
{1,8}, {2,3}, {4,5}
and {6,7} all run
over SSL / TLS

Securing DNS Lookups
•  How can we ensure that when clients look up

names with DNS, they can trust the answers they
receive?

•  Idea #1: do DNS lookups over TLS (SSL)
–  Performance: DNS is very lightweight. TLS is not.
–  Caching: crucial for DNS scaling. But then how do we

keep authentication assurances?
–  Security: must trust the resolver.

Object security vs. Channel security
•  Idea #2: make DNS results like certs

–  I.e., a verifiable signature that guarantees who
generated a piece of data; signing happens off-line

 Operation of DNSSEC
•  DNSSEC = standardized DNS security

extensions currently being deployed
•  As a resolver works its way from DNS root down

to final name server for a name, at each level it
gets a signed statement regarding the key(s)
used by the next level

•  This builds up a chain of trusted keys
•  Resolver has root’s key wired into it

•  The final answer that the resolver receives is
signed by that level’s key

•  Resolver can trust it’s the right key because of chain of
support from higher levels

•  All keys as well as signed results are cacheable

www.google.com A?
Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s
Resolver k.root-servers.net

Ordinary DNS:

We start off by sending the query to one of the root name
servers. These range from a.root-‐servers.net
through m.root-‐servers.net. Here we just picked one.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

The reply didn’t include an answer for www.google.com.
That means that k.root-‐servers.net is instead telling
us where to ask next, namely one of the name servers
for .com specified in an NS record.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

This Resource Record (RR) tells us that one of the name
servers for .com is the host a.gtld-‐servers.net.
(GTLD = Global Top Level Domain.)

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

(The line above shows com. rather than .com because
technically that’s the actual name, and that’s what the Unix
dig utility shows; but the convention is to call it “dot-com”)

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

This RR tells us that an Internet address (“A” record)
for a.gtld-‐servers.net is 192.5.6.30. That
allows us to know where to send our next query.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

The actual response includes a bunch of
NS and A records for additional .com name
servers, which we omit here for simplicity.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?
Client’s
Resolver a.gtld-servers.net

We send the same query to one of the .com
name servers we’ve been told about

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

That server again doesn’t have a direct
answer for us, but tells us about a
google.com name server we can try

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

www.google.com. A 74.125.24.14
…

Client’s
Resolver ns1.google.com

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net A 192.5.6.30
…

Client’s
Resolver k.root-servers.net

Ordinary DNS:

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com A 216.239.32.10
…

Client’s
Resolver a.gtld-servers.net

www.google.com A?

www.google.com. A 74.125.24.14
…

Client’s
Resolver ns1.google.com

Trying one of the google.com name servers then gets us
an answer to our query, and we’re good-to-go …
… though with no confidence that an attacker hasn’t led
us astray with a bogus reply somewhere along the way :-(

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

Up through here is the same as before …

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

This new RR (“Delegation Signer”) lists .com’s public key

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS description-of-com’s-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

The actual process of retrieving .com’s public key
is complicated (actually involves multiple keys) but
for our purposes doesn’t change how things work

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

This new RR specifies a signature over another RR
… in this case, the signature covers the above DS
record, and is made using the root’s private key

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

The resolver has the root’s public key
hardwired into it. The client only proceeds
with DNSSEC if it can validate the signature.

www.google.com A?

com. NS a.gtld-servers.net
a.gtld-servers.net. A 192.5.6.30
…
com. DS com’s-public-key
com. RRSIG DS signature-of-that-
 DS-record-using-root’s-key

Client’s
Resolver k.root-servers.net

DNSSEC (with simplifications):

Note: there’s no signature over the NS or A information! If an
attacker has fiddled with those, the resolver will ultimately find
it has a record for which it can’t verify the signature.

www.google.com A?
Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

The resolver again proceeds to trying one of
the name servers it’s learned about.

Nothing guarantees this is a legitimate name
server for the query!

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10
…
google.com. DS google.com’s-public-key
google.com. RRSIG DS signature-
 of-that-DS-record-using-com’s-key

Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

www.google.com A?

google.com. NS ns1.google.com
ns1.google.com. A 216.239.32.10
…
google.com. DS google.com’s-public-key
google.com. RRSIG DS signature-
 of-that-DS-record-using-com’s-key

Client’s
Resolver a.gtld-servers.net

DNSSEC (with simplifications):

Back comes similar information as before: google.com’s public
key, signed by .com’s key (which the resolver trusts because
the root signed information about it)

www.google.com A?
Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

The resolver contacts one of the google.com
name servers it’s learned about.

Again, nothing guarantees this is a legitimate
name server for the query!

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

Finally we’ve received the information we
wanted (A records for www.google.com)! …
and we receive a signature over those records

www.google.com A?

www.google.com. A 74.125.24.14
…
www.google.com. RRSIG A
 signature-of-the-A-records-using-
 google.com’s-key

Client’s
Resolver ns1.google.com

DNSSEC (with simplifications):

Assuming the signature validates, then because we believe
(due to the signature chain) it’s indeed from google.com’s
key, we can trust that this is a correct set of A records …
Regardless of what name server returned them to us!

