
Computing on Encrypted Data

CS 161: Computer Security
Prof. David Wagner

April 21, 2013

Match-making
•  Alice and Bob are cryptographers and want to find

out if they’re interested in each other romantically,
but neither wants to suffer possible rejection.

•  Can we build a match-making service where they
both get notified if they’re both interested in each
other, but otherwise they learn nothing?

•  Solution: Use a trusted server S. Alice sends x to
S, where x = 1 if she is interested in Bob or 0 if not.
Bob sends y to S. S computes z = x ∧ y and
sends z to both Alice and Bob.

•  Can Alice and Bob do this on their own without
trusting any server?

Computing on Encrypted Data
These are special cases of a general problem:
•  Alice has a circuit C, Bob has an input x.
•  They should both learn C(x), but Alice should not

learn C and Bob should not learn x.

Computing on Encrypted Data
These are special cases of a general problem:
•  Alice has a circuit C, Bob has an input x.
•  They should both learn C(x), but Alice should not

learn C and Bob should not learn x.

For the match-making example:
•  Alice’s circuit is C(t) = t ∧ x.

In other words: If x = 0, Alice’s circuit is C(t) = 0.
If x = 1, Alice’s circuit is C(t) = t.

•  Bob’s input is y.

Computing on Encrypted Data
Two-party computation problem:
•  Alice has a circuit C, Bob has an input x.
•  They should both learn C(x), but Alice should not

learn x and Bob should not learn C.

•  This has a polynomial-time solution!
•  Alice computes a single-use scrambled circuit C*,

where all its gates are encrypted, and sends it to
Bob. Alice helps Bob compute x*, an encoded
version of Bob’s input x. Bob computes z* = C*(x*)
and decodes it to get C(x).

The Basic Idea: Wire Encodings
•  On each wire, values are scrambled:

0 à 010000101 = [0]
1 à 101110111 = [1]

•  For each wire w, encoding of 0 is a random 128-bit
string ([0]w); encoding of 1 is another random 128-
bit string ([1]w).

•  Alice knows this encoding, but not Bob – Bob only
learns one of the two values.

The Basic Idea: AND gate
•  Express AND gate as a lookup table:

x y z
0 0 0
0 1 0
1 0 0
1 1 1

 x y z
[0]x [0]y [0]z
[0]x [1]y [0]z
[1]x [0]y [0]z
[1]x [1]y [1]z

E([0]x, E([0]y, [0]z))
E([0]x, E([1]y, [0]z))
E([1]x, E([0]y, [0]z))
E([1]x, E([1]y, [1]z))

This is the scrambled AND
gate; give it to Bob.

Computing with Scrambled Circuit
•  Alice scrambles C to get C*, a scrambled version.

She chooses a random encoding for each wire,
and scrambles each gate individually using the
procedure shown in previous slide.

•  Alice gives Bob C*, the scrambled circuit.
•  Alice helps Bob learn x*, a scrambled version of

Bob’s input x (but Alice doesn’t learn x or x*).
•  Bob computes z* = C*(x*), and then decodes it with

Alice’s help.

•  If Alice is a user and Bob is a cloud server, lets
server do computation on Alice’s encrypted data.

Take-away on Cloud Security
•  For now, there is a tension between security and

utility: do I store all my data on the cloud, or not?

•  There are some techniques for computing on
encrypted data that hold promise for addressing
this tension, but the field is in its infancy and there
are many limitations on what we know how to do.

Covert Channels

CS 161: Computer Security
Prof. David Wagner

April 21, 2013

Covert Channels
•  Communication between two cooperating parties

that uses a hidden (secret) channel
•  Main requirement is agreement between sender

and receiver (established in advance)
•  Example: suppose (unprivileged) program A wants

to send 128 bits of secret data to (unprivileged)
program B …
–  But can’t use pipes, sockets, signals, shared memory, or

network connections; can only read files, can’t write them
–  How can they cooperate to achieve this?

Covert Channels
•  Method #1: Divide time up into 128 time slots. In ith

time slot, A either runs heavy computation or idles,
to communicate 0 or 1 bit. B monitors CPU usage.

•  Method #2: Pick 128 files in advance. A reads ith
file, for each i where secret has a 1-bit. B observes
access time on each file.

•  There are so many other possibilities…

Covert Channels
•  How do we stop covert channels?
•  Answer: We can’t. Attacker always wins.
•  The only alternative is: don’t let A know anything

secret. i.e., don’t let untrusted programs ever learn
anything secret, because they can exfiltrate it.

Side Channels

CS 161: Computer Security
Prof. David Wagner

April 21, 2013

Side Channels
•  Unintended information leakage from A to B.
•  Crucially, here A and B are not cooperating.

Instead, B is exploiting some aspect of how system
is structured to learn something about A that A
would not want to have revealed.

•  Can be difficult to recognize because often system
builders “abstract away” seemingly irrelevant
elements of system structure

/*	 Returns	 true	 if	 the	 password	 from	 the	
	 *	 user,	 'p',	 matches	 the	 correct	 master	
	 *	 password.	 */	
bool	 check_password(char	 *p)	
{	

	 static	 char	 *master_pw	 =	 "T0p$eCRET";	
	 int	 i;	
	 for(i=0;	 p[i]	 &&	 master_pw[i];	 ++i)	
	 	 if(p[i]	 !=	 master_pw[i])	
	 	 	 return	 FALSE;	

	
	 /*	 Ensure	 both	 strings	 are	 same	 len.	 */	
	 return	 p[i]	 ==	 master_pw[i];	

}	

Attacker knows code,
but not this value

Inferring Password via Side Channel
•  Suppose the attacker’s code can call
check_password() many times (but not
billions/trillions)
– But attacker can’t breakpoint or inspect the code

•  How could the attacker infer the master
password using side channel information?

•  Consider layout of p in memory:

w i l d G U e $ s
...	
if(check_password(p))	

	 BINGO();	
...	

w i l d G U e $ s

Spread p across different memory pages:

Arrange for this page to be paged out

If master password doesn’t start with ‘w’, then loop exits
on first iteration (i=0):

	 for(i=0;	 p[i]	 &&	 master_pw[i];	 ++i)	
	 	 if(p[i]	 !=	 master_pw[i])	
	 	 	 return	 FALSE;

If it does start with ‘w’, then loop proceeds to next
iteration, generating a page fault that the caller can
observe

A j u n k

B j u n k

T j u n k
…

…

No page
fault

Page
fault!

No page
fault

T A u n k No page
fault

T B u n k No page
fault

T 0 A n k No page
fault …

T 0 u n k Page
fault!

T0p$eCRET ?	

Fix?

bool	 check_password2(char	 *p)	
{	

	 static	 char	 *master_pw	 =	 "T0p$eCRET”;	
	 int	 i;	
	 bool	 is_correct	 =	 TRUE;	

	
	 for(i=0;	 p[i]	 &&	 master_pw[i];	 ++i)	
	 	 if(p[i]	 !=	 master_pw[i])	
	 	 	 is_correct	 =	 FALSE;	

	 	 	
	 if(p[i]	 !=	 master_pw[i])	
	 	 is_correct	 =	 FALSE;	
	 return	 is_correct;	 	

}	

Note: still leaks length of master password

Note: total time correlated to number of matches

bool	 check_password3(uchar	 *p)	
{	

	 static	 uchar	 *master_pw	 =	 "T0p$eCRET”;	
	 int	 i;	
	 int	 diff	 =	 0;	

	
	 for(i=0;	 p[i]	 &&	 master_pw[i];	 ++i)	
	 	 diff	 |=	 p[i]	 ^	 master_pw[i];	

	 	 	
	 diff	 |=	 p[i]	 ^	 master_pw[i];	
	 return	 diff	 ==	 0; 	 	

}	
Constant-time equality check.
Important in crypto (e.g., checking MAC tag).

Exploiting Side Channels
For Stealth Scanning

•  Can attacker using system A scan victim V’s system
to see what services V runs …

•  … without V being able to learn A’s IP address?

•  Seems impossible: how can A receive the results of
probes A sends to V, unless probes include A’s IP
address for V’s replies?

IP Header Side Channel
4-bit

Version
4-bit

Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit

Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Payload

ID field is supposed
to be unique per IP
packet.

One easy way to do
this: increment it
each time system
sends a new
packet.

SYN-ACK

SYN-ACK

SYN-ACK

SYN-ACK

SYN-ACK

Spoofed

SYN-ACK

SYN-ACK

SYN-ACK

Upon receiving RST,
Patsy ignores it and does
nothing, per TCP spec.

SYN-ACK

SYN-ACK

SYN-ACK

SYN-ACK Spoofed

SYN-ACK

SYN-ACK

