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Match-making 
•  Alice and Bob are cryptographers and want to find 

out if they’re interested in each other romantically, 
but neither wants to suffer possible rejection. 

•  Can we build a match-making service where they 
both get notified if they’re both interested in each 
other, but otherwise they learn nothing? 

•  Solution: Use a trusted server S.  Alice sends x to 
S, where x = 1 if she is interested in Bob or 0 if not.  
Bob sends y to S.  S computes z = x ∧ y and 
sends z to both Alice and Bob. 

•  Can Alice and Bob do this on their own without 
trusting any server? 



Computing on Encrypted Data 
These are special cases of a general problem: 
•  Alice has a circuit C, Bob has an input x. 
•  They should both learn C(x), but Alice should not 

learn C and Bob should not learn x. 



Computing on Encrypted Data 
These are special cases of a general problem: 
•  Alice has a circuit C, Bob has an input x. 
•  They should both learn C(x), but Alice should not 

learn C and Bob should not learn x. 

For the match-making example: 
•  Alice’s circuit is C(t) = t ∧ x. 

In other words: If x = 0, Alice’s circuit is C(t) = 0. 
If x = 1, Alice’s circuit is C(t) = t. 

•  Bob’s input is y.  



Computing on Encrypted Data 
Two-party computation problem: 
•  Alice has a circuit C, Bob has an input x. 
•  They should both learn C(x), but Alice should not 

learn x and Bob should not learn C. 

•  This has a polynomial-time solution! 
•  Alice computes a single-use scrambled circuit C*, 

where all its gates are encrypted, and sends it to 
Bob.  Alice helps Bob compute x*, an encoded 
version of Bob’s input x.  Bob computes z* = C*(x*) 
and decodes it to get C(x). 



The Basic Idea: Wire Encodings 
•  On each wire, values are scrambled: 

 
0 à 010000101 = [0] 
1 à 101110111 = [1] 

•  For each wire w, encoding of 0 is a random 128-bit 
string ([0]w); encoding of 1 is another random 128-
bit string ([1]w). 

•  Alice knows this encoding, but not Bob – Bob only 
learns one of the two values. 



The Basic Idea: AND gate 
•  Express AND gate as a lookup table: 
 

x  y  z 
0  0  0 
0  1  0 
1  0  0 
1  1  1 

 x      y     z         
[0]x  [0]y  [0]z 
[0]x  [1]y  [0]z 
[1]x  [0]y  [0]z 
[1]x  [1]y  [1]z 

 
E([0]x, E([0]y, [0]z)) 
E([0]x, E([1]y, [0]z)) 
E([1]x, E([0]y, [0]z)) 
E([1]x, E([1]y, [1]z)) 

This is the scrambled AND 
gate; give it to Bob. 



Computing with Scrambled Circuit 
•  Alice scrambles C to get C*, a scrambled version.  

She chooses a random encoding for each wire, 
and scrambles each gate individually using the 
procedure shown in previous slide. 

•  Alice gives Bob C*, the scrambled circuit. 
•  Alice helps Bob learn x*, a scrambled version of 

Bob’s input x (but Alice doesn’t learn x or x*). 
•  Bob computes z* = C*(x*), and then decodes it with 

Alice’s help. 

•  If Alice is a user and Bob is a cloud server, lets 
server do computation on Alice’s encrypted data. 



Take-away on Cloud Security 
•  For now, there is a tension between security and 

utility: do I store all my data on the cloud, or not? 

•  There are some techniques for computing on 
encrypted data that hold promise for addressing 
this tension, but the field is in its infancy and there 
are many limitations on what we know how to do. 



Covert Channels 

CS 161: Computer Security 
Prof. David Wagner 

 
 

April 21, 2013 



Covert Channels 
•  Communication between two cooperating parties 

that uses a hidden (secret) channel 
•  Main requirement is agreement between sender 

and receiver (established in advance) 
•  Example: suppose (unprivileged) program A wants 

to send 128 bits of secret data to (unprivileged) 
program B … 
–  But can’t use pipes, sockets, signals, shared memory, or 

network connections; can only read files, can’t write them 
–  How can they cooperate to achieve this? 



Covert Channels 
•  Method #1: Divide time up into 128 time slots.  In ith 

time slot, A either runs heavy computation or idles, 
to communicate 0 or 1 bit.  B monitors CPU usage. 

•  Method #2: Pick 128 files in advance.  A reads ith 
file, for each i where secret has a 1-bit.  B observes 
access time on each file.  

•  There are so many other possibilities… 



Covert Channels 
•  How do we stop covert channels? 
•  Answer: We can’t.  Attacker always wins. 
•  The only alternative is: don’t let A know anything 

secret.  i.e., don’t let untrusted programs ever learn 
anything secret, because they can exfiltrate it. 
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Side Channels 
•  Unintended information leakage from A to B. 
•  Crucially, here A and B are not cooperating.  

Instead, B is exploiting some aspect of how system 
is structured to learn something about A that A 
would not want to have revealed. 

•  Can be difficult to recognize because often system 
builders “abstract away” seemingly irrelevant 
elements of system structure 





/*	  Returns	  true	  if	  the	  password	  from	  the	  
	  *	  user,	  'p',	  matches	  the	  correct	  master	  
	  *	  password.	  */	  
bool	  check_password(char	  *p)	  
{	  

	  static	  char	  *master_pw	  =	  "T0p$eCRET";	  
	  int	  i;	  
	  for(i=0;	  p[i]	  &&	  master_pw[i];	  ++i)	  
	   	  if(p[i]	  !=	  master_pw[i])	  
	   	   	  return	  FALSE;	  

	  
	  /*	  Ensure	  both	  strings	  are	  same	  len.	  */	  
	  return	  p[i]	  ==	  master_pw[i];	  

}	  

Attacker knows code, 
but not this value 



Inferring Password via Side Channel 
•  Suppose the attacker’s code can call 
check_password() many times (but not 
billions/trillions) 
– But attacker can’t breakpoint or inspect the code 

•  How could the attacker infer the master 
password using side channel information? 

•  Consider layout of p in memory:  

w i l d G U e $ s 
...	  
if(check_password(p))	  

	  BINGO();	  
...	  



w i l d G U e $ s 

Spread p across different memory pages: 

Arrange for this page to be paged out 

If master password doesn’t start with ‘w’, then loop exits 
on first iteration (i=0): 

	  for(i=0;	  p[i]	  &&	  master_pw[i];	  ++i)	  
	   	  if(p[i]	  !=	  master_pw[i])	  
	   	   	  return	  FALSE; 

If it does start with ‘w’, then loop proceeds to next 
iteration, generating a page fault that the caller can 
observe 



A j u n k . . . . 

B j u n k . . . . 

T j u n k . . . . 
… 

… 

No page 
fault 

Page 
fault! 

No page 
fault 

T A u n k . . . . No page 
fault 

T B u n k . . . . No page 
fault 

T 0 A n k . . . . No page 
fault … 

T 0 u n k . . . . Page 
fault! 

T0p$eCRET ?	  

Fix? 



bool	  check_password2(char	  *p)	  
{	  

	  static	  char	  *master_pw	  =	  "T0p$eCRET”;	  
	  int	  i;	  
	  bool	  is_correct	  =	  TRUE;	  

	  
	  for(i=0;	  p[i]	  &&	  master_pw[i];	  ++i)	  
	   	  if(p[i]	  !=	  master_pw[i])	  
	   	   	  is_correct	  =	  FALSE;	  

	   	  	  
	  if(p[i]	  !=	  master_pw[i])	  
	   	  is_correct	  =	  FALSE;	  
	  return	  is_correct;	  	  

}	  

Note: still leaks length of master password 

Note: total time correlated to number of matches 



bool	  check_password3(uchar	  *p)	  
{	  

	  static	  uchar	  *master_pw	  =	  "T0p$eCRET”;	  
	  int	  i;	  
	  int	  diff	  =	  0;	  

	  
	  for(i=0;	  p[i]	  &&	  master_pw[i];	  ++i)	  
	   	  diff	  |=	  p[i]	  ^	  master_pw[i];	  

	   	  	  
	  diff	  |=	  p[i]	  ^	  master_pw[i];	  
	  return	  diff	  ==	  0; 	  	  

}	  
Constant-time equality check. 
Important in crypto (e.g., checking MAC tag). 



Exploiting Side Channels 
For Stealth Scanning 

•  Can attacker using system A scan victim V’s system 
to see what services V runs … 

•  … without V being able to learn A’s IP address? 

•  Seems impossible: how can A receive the results of 
probes A sends to V, unless probes include A’s IP 
address for V’s replies? 



IP Header Side Channel 
4-bit 

Version 
4-bit 

Header 
Length 

8-bit 
Type of Service 

(TOS) 
16-bit Total Length (Bytes) 

16-bit Identification 
3-bit 

Flags 13-bit Fragment Offset 

8-bit Time to  
Live (TTL) 8-bit Protocol 16-bit Header Checksum 

32-bit Source IP Address 

32-bit Destination IP Address 

Payload 

ID field is supposed 
to be unique per IP 
packet. 
 
One easy way to do 
this: increment it 
each time system 
sends a new 
packet. 



SYN-ACK 
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SYN-ACK 

Spoofed 



SYN-ACK 
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SYN-ACK 

Upon receiving RST, 
Patsy ignores it and does 
nothing, per TCP spec. 
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SYN-ACK Spoofed 



SYN-ACK 



SYN-ACK 


