
Song
Spring 2015

CS 161
Computer Security Discussion 10

March 31 & April 1, 2015

Question 1 Cross Site Request Forgery (CSRF) (10 min)
In a CSRF attack, a malicious user is able to take action on behalf of the victim. Consider
the following example. Mallory posts the following in a comment on a chat forum:

Of course, Patsy-Bank won’t let just anyone request a transaction on behalf of any given
account name. Users first need to authenticate with a password. However, once a user
has authenticated, Patsy-Bank associates their session ID with an authenticated session
state.

(a) Explain what could happen when Victim Vern visits the chat forum and views
Mallory’s comment.

(b) What are possible defenses against this attack?

Solution:

(a) The img tag embedded in the form causes the browser to make a request to
http://patsy-bank.com/transfer?amt=1000&to=mallory with Patsy-Bank’s
cookie. If Victim Vern was previously logged in (and didn’t log out), Patsy-Bank
might assume Vern is authorizing a transfer of 1000 USD to Mallory.

(b) CSRF is caused by the inability of Patsy-Bank to differentiate between requests
from arbitrary untrusted pages and requests from Patsy-Bank form submissions.
The best way to fix this today is to use a token to bind the requests to the form.
For example, if a request to http://patsy-bank.com/transfer is normally
made from a form at http://patsy-bank.com/askpermission, then the form
in the latter should include a random token that the server remembers. The form
submission to http://patsy-bank.com/transfer includes the random token
and Patsy-Bank can then compare the token received with the one remembered
and allow the transaction to go through only if the comparison succeeds.

Page 1 of 3

Question 2 Session Fixation (15 min)
Some web application frameworks allow cookies to be set by the URL. For example,
visiting the URL

http://foobar.edu/page.html?sessionid=42.

will result in the server setting the sessionid cookie to the value “42”.

(a) Can you spot an attack on this scheme?

(b) Suppose the problem you spotted has been fixed as follows. foobar.edu now es-
tablishes new sessions with session IDs based on a hash of the tuple (username,

time of connection). Is this secure? If not, what would be a better approach?

Solution:

(a) The main attack is known as session fixation. Say the attacker establishes a ses-
sion with foobar.edu, receives a session ID of 42, and then tricks the victim into
visiting http://foobar.edu/browse.html?sessionid=42 (maybe through an
img tag). The victim is now browsing foobar.edu with the attacker’s account.
Depending on the application, this could have serious implications. For exam-
ple, the attacker could trick the victim to pay his bills instead of the victim’s
(as intended).

Another possibility is for the attacker to fix the session ID and then send the user
a link to the log-in page. Depending on how the application is coded, it might
so happen that the application allows the user to log-in but reuses the previous
(attacker-set) session ID. For example, if the victim types in his username and
password at http://foobar.edu/login.html?sessionid=42, then the session
ID 42 would be bound to his identity. In such a scenario, the attacker could
impersonate the victim on the site. This is uncommon nowadays, as most login
pages reset the session ID to a new random value instead of reusing an old one.

(b) The proposed fix is not secure since it solves the wrong problem, per the discus-
sion in part (a). Even if it were the right approach, timestamps and user names
do not provide enough entropy, and could be guessable with a few thousand
tries.

The correct fix is for the server to generate cookie values afresh, rather than
setting them based on the session ID provided via URL parameters.

A final note: do not hesitate to ask for help! Our office hours exist to help you. Please
visit us if you have any questions or doubts about the material.

Question 3 Encryption Modes (15 min)
Consider the following encryption mode for applying AES-128 with a key K to a message
M that consists of l 128-bit blocks M1,...,Ml. The sender first picks a random 128-bit
string, C0, which is the first block of the ciphertext. Then for i > 0, the ith ciphertext

Discussion 10 Page 2 of 3 CS 161 – Sp 15

block is given by Ci = Ci−1⊕ AES-128K(Mi). The ciphertext is the concatenation of
these individual blocks: C = C0 ‖ C1 ‖ C2 ‖ ... ‖ Cl.

(a) What is the intent behind the random value C0? (I.e., what is it meant to achieve.)

Solution: C0 is an Initialization Vector. The intent behind it is to ensure that
if the same text is encrypted in two distinct messages, the ciphertexts will differ,
so an eavesdropper can’t infer the relationship between the messages.

(b) Is this mode of encryption secure? If so, state what the desirable properties it has
that make it secure. If not, sketch a weakness.

Solution: It is not secure. Since the ciphertext is visible to an eavesdropper,
the eavesdropper knows Ci for all values of i. This allows them to directly
determine AES-128K(Mi) for all i due to the inverse nature of exclusive-or,
which makes the scheme equivalent to ECB in terms of revealing whenever two
message blocks the same text.

Another valid criticism is that because the scheme uses the Initialization Vec-
tor C0 in a reversible manner, an attacker can deduce when the two separate
ciphertexts in fact encode the same text.

(c) Suppose we replace the computation of Ci with Ci = AES-128k(Ci−1 ⊕Mi). Does
this make the mode of encryption more secure, less secure, or unchanged? Briefly
explain your answer.

Solution: This mode is more secure. This alternate form is exactly the defini-
tion of CBC mode, which has been proven secure in the face of chosen plaintext
attacks.

Discussion 10 Page 3 of 3 CS 161 – Sp 15

