
CS161 Midterm 1 Review

Midterm 1: March 4, 18:30-
20:00

Same room as lecture

Security Analysis and Threat
Model

• Basic security properties
– CIA

• Threat model
A. We want perfect security
B. Security is about risk analysis and
economics

Answer is B.

Software Vulnerabilities

• Buffer overflow vulnerabilities and
attacks

• Integer overflow vulnerabilities and
attacks

• Format string vulnerabilities and attacks
• Arc injection/return-to-libc/ROP

vulnerabilities and attacks
• General control hijacking attacks
• Data hijacking attacks

General Control Hijacking

Control Flow
Pointer

jump to address longjmp pointer

function pointer in
heap

return address
frame pointer

exception Handler
function pointer
as local variable shellcode,

library (return
to libc)

Overwrite Step:

Find some way to modify a Control Flow Pointer to point to your
shellcode, library entry point, or other code of interest.

Activate Step:

Find some way to activate that modified Control Flow Pointer.

expected code

Dawn Song 4

Instances of Control
Hijacking

Location
in
Memory

Control Flow
Pointer

How to
activate

Stack Return Address Return from
function

Stack Frame Pointer Return from
function

Stack Function
Pointers as
local variables

Reference and
call function
pointer

Stack Exception
Handler

Trigger
Exception

Heap Function
pointer in heap
(i.e. method of
an object)

Reference and
call function
pointer

Anywhe
re

setjmp and
longjmp
program state
buffer

Call longjmp

Ret Addr
Frame Ptr

buf

(stack frame)

exception handers
local fn ptrs

ptr

data

Object
T FP1:

FP2:

FP3:

vtable
method
#1method #2
method
#3

(HEA

P)

buf

saved
pointer

…

other data

longjmp

buf

ptr

data

Object
T FP1:

FP2:

FP3:

vtable
method
#1method #2
method
#3

(HEA

P)

buf

Dawn Song 5

arguments

return address

stack frame pointer

authentication_variable
buffer

Data Hijacking

Dawn Song 6

Normal Situation:
User types in a password which is stored in the buffer, and if the
user is successfully authenticated, the authentication_variable is
set.

Modifying data in a way not intended Example: Authentication variable

arguments

return address

stack frame pointer

authentication_variable
buffer

Exploited Situation:
User types in a password which is long enough to overflow buffer
and into the authentication_variable. The user is now
unintentionally authenticated.

arguments

return address

stack frame pointer

authentication_variable
buffer

Stack and Format Strings

• Function behavior is controlled by the format
string

• Retrieves parameters from stack as
requested: “%”

• Example:

printf(“Number %d has no address, number %d has:
%08x\n”, I, a, &a)

stack top
…
<&a>
<a>
<i>
A
…
stack bottom

A Address of the format
string

i Value of variable I

a Value of variable a

&a Address of variable a

SW Vuln. Defenses

• Non-execute (NX)
• Stack canaries
• ASLR
• Bounds check
• Which defenses are effective against

what attacks?

Code Injection Arc Injection

Stack Non-Execute (NX)*
ASLR
StacKGuard(Canaries)
ProPolice
/GS
libsafe

ASLR
StacKGuard(Canaries)
ProPolice
/GS
libsafe

Heap Non-Execute (NX)*
ASLR
PointGuard

ASLR
PointGuard

Exceptio
n
Handler
s

Non-Execute (NX)*
ASLR
SAFESEH and SEHOP

ASLR
SAFESEH and SEHOP

• Defense against buffer overflow
attacks

Code Injection Arc Injection

Stack Non-Execute (NX)*
ASLR
StacKGuard(Canaries)

ASLR
StacKGuard(Canaries)

Heap Non-Execute (NX)*
ASLR

ASLR

Exceptio
n
Handler
s

Non-Execute (NX)*
ASLR

ASLR

Defenses/Mitig
ations * When Applicable

Effectiveness and
Limitations

Dawn Song 9

Fuzzing

• Random fuzzing
• Mutation-based fuzzing
• Generation-based fuzzing
• Code coverage

– line, branch and path coverage

• Example problem: given a program,
calculate how many inputs can
achieve a full line/branch/path
coverage (e.g., Discussion 5)

Coverage Metrics

Lines

Coverage Metrics

Lines

Coverage Metrics

Lines Branche
s

Coverage Metrics

Lines Branche
s

Coverage Metrics

Lines Branche
s

Paths

Coverage Metrics

Lines Branche
s

Paths

Coverage Metrics

Lines Branche
s

Paths

Quiz on Line Coverage

1

2

3

4

How many lines are in this
code?

How many test cases (pairs of
values for (a,b)) are needed to
achieve 100% line coverage?

1

2

3

4

Quiz on Branch Coverage

1

2

3

4

How many branches are in
this code?

How many test cases (pairs of
values for (a,b) are needed to
achieve 100% branch
coverage?

1

2

3

4

Quiz on Path Coverage

1

2

3

4

How many paths are in this
code?

How many test cases (pairs of
values for (a,b) are needed to
achieve 100% path coverage?

1

2

3

4

Completeness of Coverage Metrics

Which of the following
coverage results
guarantee the bug will
be found?

100% line coverage

100% branch
coverage
100% path
coverage

None of the above

Properties of Coverage Metrics

• A numeric measure of an analysis
• An objective basis for comparing different analyses
• A way to evaluate if no progress is made (no coverage

metrics are increasing)

Important: Metrics are not sufficient conditions for
completeness.
100% coverage does not mean all sources of
vulnerabilities have been evaluated.

Symbolic Execution

• Path predicates
• Security vulnerabilities as assertion

violations
• How to use symbolic execution to

find bugs
• Constraint-based automatic test case

generation
• Challenges for symbolic execution

Assertion Violation as
Satisfiability

err

input < UINT_MAX
 - 2

&& len == input + 3

&& ! (len < 10)

&& ! (len % 2 == 0)

&&
!(len < UINT_MAX
– 1)

is satisfied by the assignment

In the appropriate theory, the
formula

input UINT_MAX - 3

len UINT_MAX

Quiz: Branches and Paths

1

1F 1T

2

n

nF nT

ER
R

2F 2T

3

Suppose we want to know if there
is a feasible path to the location
ERR in this program.

Suppose we generate one path
predicate for each path through
this program.

How many path predicates are
generated?

F T

F T

F T

Quiz: Branches and Paths

1

1F 1T

2

n

nF nT

ER
R

2F 2T

3

Suppose we want to know if there
is a feasible path to the location
ERR in this program.

Suppose we generate one path
predicate for each path through
this program.

How many path predicates are
generated?

2n

F T

F T

F T

Quiz: Branches and Paths

1

1F 1T

2

n

nF nT

ER
R

2F 2T

3

Suppose we want to know if there
is a feasible path to the location
ERR in this program.

Suppose we generate one path
predicate for each path through
this program.

How many path predicates are
generated?

2n

Number of predicates can be
exponential in the number of
branches.

F T

F T

F T

Topics Covered in Midterm 2

• Static analysis
• Program Verification
• Security principles and architectures
• Malware
• Other topics after midterm 2

	Slide 1
	Security Analysis and Threat Model
	Software Vulnerabilities
	General Control Hijacking
	Instances of Control Hijacking
	Data Hijacking
	Stack and Format Strings
	SW Vuln. Defenses
	Effectiveness and Limitations
	Fuzzing
	Coverage Metrics
	Coverage Metrics
	Coverage Metrics
	Coverage Metrics
	Coverage Metrics
	Coverage Metrics
	Coverage Metrics
	Quiz on Line Coverage
	Quiz on Branch Coverage
	Quiz on Path Coverage
	Completeness of Coverage Metrics
	Properties of Coverage Metrics
	Symbolic Execution
	Assertion Violation as Satisfiability
	Quiz: Branches and Paths
	Quiz: Branches and Paths
	Quiz: Branches and Paths
	Topics Covered in Midterm 2
	Slide 29

