Computer Security Course.

Dawn Song

Crypto: More Crypto Tools

Slides credit: Dan Boneh, Doug Tygar, David Wagner

Dawn Song

Overview

- This lecture
 - Secret sharing
 - Secure multi-party computation
 - Zero-knowledge proof

Secret Sharing

- Suppose we want to share a secret
 - Share among *n* users
 - Any q users can recover the secret
 - Any less than q users cannot
- Example
 - Corporate bank account
 - Require three out of six corporate officers to access

Shamir Secret Sharing

- Key idea
 - Make a random polynomial curve f(x) of degree q-1:
 - Secret is f(0)
 - Distribute *n* points
 - *q* points determine the curve
 - q-1 or less points do not determine the curve
 - All calculations are mod p, where p is a prime

Shamir Secret Sharing

 $f(x)=a_{q-1}x^{q-1}+...+a_1x+a_0 \pmod{p}$, where $a_{q-1},...,a_1,a_0$ are picked uniformly at random from Z_p^* $Z_p^* = \{1,2,...,p-1\}$, where p is a prime.

Share $S_i = (r_i, f(r_i))$, where r_i is sampled uniformly at random from Z_{p^*} , i=1,2,...,n,

Given q points, we can solve for $a_{q-1}, ..., a_1, a_0$

Secret is $f(0) = a_0$

Finding the Secret

This reduces to solving linear equations

Example with q=3 and n=5 :

$$f(1) = a_2 + a_1 + a_0 \pmod{p}$$

$$f(2) = 4a_2 + 2a_1 + a_0 \pmod{p}$$

$$f(3) = 9a_2 + 3a_1 + a_0 \pmod{p}$$

$$f(4) = 16a_2 + 4a_1 + a_0 \pmod{p}$$

$$f(5) = 25a_2 + 5a_1 + a_0 \pmod{p}$$

Lagrange Interpolation

Given (x_i, y_i) , where $y_i = f(x_i)$ and i = 1, 2, ..., q

$$L_{i}(x) = \frac{\prod_{j \neq i} (x - x_{j})}{\prod_{j \neq i} (x_{i} - x_{j})}$$
$$a_{0} = f(0) = \sum_{i=1}^{q} y_{i} L_{i}(0)$$

Secure Multi-Party Computation

Protocols

- "Thm:" anything that can be done with a trusted authority can also be done without
- Secure multi-party computation

Zero-knowledge Proof

Interactive proofs

Here are two cloths.

Interactive proofs

Imagine that I am red-green color-blind...

Interactive proofs

How could you prove to me that you can distinguish the red cloth from the green cloth, if I am red-green color-blind?

An interactive proof

Verifier

Prover

Sudoku

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

Sudoku

8	3	5	4	1	6	9	2	7
2	9	6	8	5	7	4	3	1
4	1	7	2	9	3	6	5	8
5	6	9	1	3	4	7	8	2
1	2	3	6	7	8	5	4	9
7	4	8	5	2	9	1	6	3
6	5	2	7	8	1	3	9	4
9	8	1	3	4	5	2	7	6
3	7	4	9	6	2	8	1	5

Goal: Prove the puzzle is solvable

Verifier

Prover

You prepare your proof

8	3	5	4	1	6	9	2	7
2	9	6	8	5	7	4	3	1
4	1	7	2	9	3	6	5	8
5	6	9	1	3	4	7	8	2
1	2	3	6	7	8	5	4	9
7	4	8	5	2	9	1	6	3
6	5	2	7	8	1	3	9	4
9	8	1	3	4	5	2	7	6
3	7	4	9	6	2	8	1	5

$$1 \rightarrow e$$

$$2 \rightarrow h$$

$$3 \rightarrow c$$

$$4 \rightarrow f$$

$$5 \rightarrow i$$

$$6 \rightarrow d$$

$$7 \rightarrow b$$

8 → a

 $9 \rightarrow g$

You prepare your proof

а	С	i	f	е	d	g	h	b
h	g	d	а	i	b	f	С	е
f	е	b	h	g	С	d	i	а
i	d	g	е	с	f	b	а	h
е	h	С	d	b	а	i	f	g
b	f	а	i	h	g	е	d	с
d	i	h	b	а	е	С	g	f
g	а	е	С	f	i	h	b	d
С	b	f	g	d	h	а	е	i

$$1 \rightarrow e$$

$$2 \rightarrow h$$

$$3 \rightarrow c$$

$$4 \rightarrow f$$

$$5 \rightarrow i$$

$$6 \rightarrow d$$

$$7 \rightarrow b$$

$$8 \rightarrow a$$

$$9 \rightarrow g$$

1

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

My turn: I keep you honest

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

Zero-knowledge proof: puzzle is solvable

Repeat 1000 times

Goal: Prove the puzzle is solvable

Verifier

Prover

Summary

Alice can prove to Dave that the Sudoku puzzle has a solution. Dave gains zero knowledge about the solution.

Sudoku isn't special:

Theorem. If I can prove it, I can prove it to you without revealing the proof.

Summary

Theorem. If I can prove it, I can prove it to you without revealing the proof.

Zero-Knowledge Proof for Discrete Logs

- Suppose a prover has an identity x, which is a number satisfying B=A^x (mod p). (A,B,p) is publicly available. The prover wants to prove he/she has x but does not want to reveal x to the verifier.
 - Prover chooses a random number 0≤ r <p-1 and sends the verifier h=A^r (mod p)
 - Verifier sends back a random bit b
 - Prover sends s=(r+bx) (mod (p-1)) to verifier
 - Verifier computes $A^s \pmod{p}$ which should equal $hB^b \pmod{p}$