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DNS Background
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Host Names vs. IP addresses

• Host names
– Examples:  and 
– Mnemonic name appreciated by humans
– Variable length, full alphabet of characters
– Provide little (if any) information about location

• IP addresses
– Examples:  and 
– Numerical address appreciated by routers
– Fixed length, binary number
– Hierarchical, related to host location
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Mapping Names to Addresses

• Domain Name System (DNS)
– Hierarchical name space divided into zones
– Zones distributed over collection of DNS servers
– (Also separately maps addresses to names)

• Hierarchy of DNS servers
– Root (hardwired into other servers)
– Top-level domain (TLD) servers
– “Authoritative” DNS servers (e.g. for berkeley.edu)
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Mapping Names to Addresses

• Domain Name System (DNS)
– Hierarchical name space divided into zones
– Zones distributed over collection of DNS servers
– (Also separately maps addresses to names)

• Hierarchy of DNS servers
– Root (hardwired into other servers)
– Top-level domain (TLD) servers
– “Authoritative” DNS servers (e.g. for berkeley.edu)

• Performing the translations
– Each computer configured to contact a resolver
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requesting host
xyz.poly.edu gaia.cs.umass.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server

(‘umass.edu’, ‘cs.umass.edu’)
dns.cs.umass.edu

78

TLD DNS server (‘.edu’)

Example
Host at xyz.poly.edu 

wants IP address for 
gaia.cs.umass.edu
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DNS Protocol

DNS protocol: query and reply messages, both with 
same message format

(Mainly uses UDP transport rather than TCP)

Message header:
• Identification: 16 bit # for 

query, reply to query uses 
same #

• Replies can include “Authority” 
(name server responsible for 
answer) and “Additional” (info 
client is likely to look up soon 
anyway)

• Replies have a Time To Live 
(in seconds) for caching

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Use Unix “ ” utility to look up DNS 
address (“ ”) for hostname  
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

These are just comments from  itself 
with details of the request/response



10

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Transaction identifier
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Here the server echoes back the 
question that it is answering



12

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Answer” tells us its address is  and 
we can cache the result for 21,600 seconds
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Authority” tells us the name servers responsible for 
the answer.  Each record gives the hostname of a 
different name server (“ ”) for names in   
We should cache each record for 11,088 seconds. 
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                11088   IN      NS      STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu.         126738  IN      A       18.71.0.151
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

“Additional” provides extra information to save us from 
making separate lookups for it, or helps with bootstrapping.  

Here, it tells us the IP addresses for the hostnames of the 
name servers.  We add these to our cache.
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Non-Eavesdropping Threats: DNS
• DHCP attacks show brutal power of attacker who can 

eavesdrop
• Consider attackers who can’t eavesdrop - but still aim 

to manipulate us via how protocols function
– As a DNS resolver
– Off-path DNS spoofing

• DNS: path-critical for just about everything we do
– Maps hostnames ⇔ IP addresses
– Design only scales if we can minimize lookup traffic

• #1 way to do so: caching
• #2 way to do so: return not only answers to queries, but 

additional info that will likely be needed shortly

• Directly interacting w/ DNS: dig program on Unix
– Allows querying of DNS system
– Dumps each field in DNS responses
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

What happens if the mit.edu server 
returns the following to us instead?
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

We dutifully store in our cache a mapping of 
 to an IP address under 

MIT’s control.  (It could have been any IP 
address they wanted, not just one of theirs.)
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

In this case they chose to make the 
mapping disappear after 30 seconds.  
They could have made it persist for 
weeks, or disappear even quicker.
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

How do we fix such cache poisoning?
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dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu.                  IN      A

;; ANSWER SECTION:
eecs.mit.edu.           21600   IN      A       18.62.1.6

;; AUTHORITY SECTION:
mit.edu.                11088   IN      NS      BITSY.mit.edu.
mit.edu.                11088   IN      NS      W20NS.mit.edu.
mit.edu.                30      IN      NS      eecs.berkeley.edu. 

;; ADDITIONAL SECTION:
eecs.berkeley.edu.      30      IN      A       18.6.6.6
BITSY.mit.edu.          166408  IN      A       18.72.0.3
W20NS.mit.edu.          126738  IN      A       18.70.0.160

Don’t accept Additional records unless they’
re for the domain we’re looking up

E.g., looking up  ⇒ only accept 
additional records from *

No extra risk in accepting these since server could 
return them to us directly in an Answer anyway.

=
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DNS Threats, con’t

What about blind spoofing?
• Say we look up 

; how can an off-
path attacker feed us a 
bogus  answer before the 
legitimate server replies?

• How can such an attacker 
even know we are looking up 

? Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits

…
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DNS Blind Spoofing, con’t

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits

So this will be k+1

They observe ID k here…
…

Originally, identification field 
incremented by 1 for each 
request.  How does attacker 
guess it?

Once they know we’re looking 
it up, they just have to guess 
the Identification field and reply 
before legit server.

How hard is that?

Fix?
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DNS Blind Spoofing, con’t

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits

Attacker can send lots of replies, 
not just one …

However: once reply from legit 
server arrives (with correct 
Identification), it’s cached and 
no more opportunity to poison it. 
Victim is innoculated!

Once we randomize the 
Identification, attacker has a 
1/65536 chance of guessing it 
correctly.
Are we pretty much safe?

Unless attacker can send 
1000s of replies before legit 
arrives, we’re likely safe - 
phew! ?
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DNS Blind Spoofing (Kaminsky 2008)

• Two key ideas:
– Spoof uses Additional field (rather than Answer)
– Attacker can get around caching of legit replies by 

generating a series of different name lookups: 

…
…
…

…
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;; QUESTION SECTION:
;randomk.google.com.            IN      A

;; ANSWER SECTION:
randomk.google.com      21600   IN      A       

;; AUTHORITY SECTION:
google.com.             11088   IN      NS      mail.google.com

;; ADDITIONAL SECTION:
mail.google.com         126738  IN      A       6.6.6.6

Kaminsky Blind Spoofing, con’t
For each lookup of , 
attacker returns a bunch of records like this, 
each with a different Identifier

Once they win the race, not only have they poisoned 
 … but also the cached  record for 

’s name server - so any future X  
lookups go through the attacker’s machine
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;; QUESTION SECTION:
;randomk.google.com.            IN      A

;; ANSWER SECTION:
randomk.google.com      21600   IN      A       

;; AUTHORITY SECTION:
google.com.             11088   IN      NS      mail.google.com

;; ADDITIONAL SECTION:
mail.google.com         126738  IN      A       6.6.6.6

Kaminsky Blind Spoofing, con’t
For each lookup of , 
attacker returns a bunch of records like this, 
each with a different Identifier

Once they win the race, not only have they poisoned 
 … but also the cached  record for 

’s name server - so any future X  
lookups go through the attacker’s machine
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

16 bits 16 bits
Central problem: all that tells a 
client they should accept a 
response is that it matches the 
Identification field.

With only 16 bits, it lacks 
sufficient entropy: even if truly 
random, the search space an 
attacker must brute force is too 
small.

Where can we get more 
entropy?  (Without requiring a 
protocol change.)
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

DNS (primarily) uses UDP for 
transport rather than TCP.

UDP header has:
  16-bit Source & Destination ports
    (identify processes, like w/ TCP)
  16-bit checksum, 16-bit length

 SRC port  DST port

checksum length

16 bits 16 bits

UDP Payload

UDP Header
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

DNS (primarily) uses UDP for 
transport rather than TCP.

UDP header has:
  16-bit Source & Destination ports
    (identify processes, like w/ TCP)
  16-bit checksum, 16-bit length

Src=53 Dest=53

checksum length

16 bits 16 bits

For requestor to receive DNS 
reply, needs both correct 
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 - but 
not fundamental, just convenient

Total entropy: 16 bits
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

Total entropy: ? bits
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Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

# Authority RRs # Additional RRs

Identification Flags

# Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

32 bits of entropy makes it 
orders of magnitude harder for 
attacker to guess all the 
necessary fields and dupe victim 
into accepting spoof response.

This is what primarily “secures” 
DNS today.  (Note: not all 
resolvers have implemented 
random source ports!)

Total entropy: 32 bits
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•Denial-of-Service (DoS)
•Preventing legitimate users from using a service

• We need to consider our threat model
• What might motivate a DoS attack?
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Credit: http://thehackernews.com/ 
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Credit: Akamai, The State of the Internet Q4 2014
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Credit: http://thehackernews.com/ 



•Showing off / entertainment / ego
•Competitive advantage

Maybe commercial, maybe just to win

•Vendetta / denial-of-money
•Extortion
•Political statements
• Impair defenses
•Espionage
•Warfare



•Types of DoS
Network-level DoS
Application-level DoS

•DDoS: Distributed Denial-of-Service
•Amplification is key: 

Traffic volume amplification
o E.g. third parties amplify traffic
Computation resource amplification
o E.g. memory consumption, CPU cycles

47



•How could you DoS a target’s Internet access?
Flooding with lots of packets (brute-force)
DDoS: flood with packets from many sources
Amplification: Abuse patsies who will amplify your traffic

•What resources does attacker need?
At least as much sending capacity (“bandwidth”) as the 
bottleneck link of the target’s Internet connection
o Attacker sends maximum-sized packets

Or: overwhelm the rate at which the bottleneck router can 
process packets
o Attacker sends minimum-sized packets to maximize packet arrival rate



• Suppose an attacker has high bandwidth (a “big pipe”)

• It sends packets to the target at a high rate

• How can the target defend against onslaught?
Install a network filter to discard any packets that arrive with 
attacker’s IP address as their source
o E.g., drop * 66.31.1.37:* -> *:*
o Or it can leverage any other pattern in the flooding traffic that’s not in 

benign traffic
o Attacker’s IP address = means of identifying misbehaving user



… but DoS filters can be easily evaded
•Make traffic appear as though it’s from many 
hosts

Spoof the source address so it can’t be used to filter
o Just pick a random 32-bit number of each packet sent

How does a defender filter this?
o They don’t!
o Best they can hope for is that operators around the world 

implement anti-spoofing mechanisms (today about 75% do)

• Use many hosts to send traffic rather than just one
Requires defender to install complex filters
How many hosts is “enough” for the attacker?
o Today they are very cheap to acquire … :-(



•Asymmetries allow attackers to consume victim 
resources with little comparable effort

Makes DoS easier to launch
Defense costs much more than attack

•Particularly dangerous form of asymmetry: 
amplification

Attacker leverages third party resources to increase 
workload



•Amplification example: DNS lookups
•Attacker spoofs DNS request from open DNS 
servers, seemingly from the target

Small attacker packets yield large flooding packets
o Since the reply includes a copy of the query, plus the answer, etc

•Note #1: these examples involve blind spoofing
So for network-layer flooding, generally only works for 
UDP-based protocols (can’t establish TCP conn.)

•Note #2: victim doesn’t see spoofed source 
addresses

Addresses are those of actual intermediary systems



•Recall TCP’s 3-way connection establishment 
handshake

Goal: agree on initial sequence numbers

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state 
associated with 
connection here
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack



•Recall TCP’s 3-way connection establishment 
handshake

Goal: agree on initial sequence numbers

•So a single SYN from an attacker suffices to force 
the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state 
associated with 
connection here
(buffers, timers, 
counters)Attacker doesn’t 

even need to 
send this ack



• Attacker targets memory rather than network capacity

• Every (unique) SYN that the attacker sends burdens the 
target

• What should target do when it has no more memory for 
a new connection?

No good answer 
Refuse new connection? 
o Legit new users can’t access service 
Evict old connections to make room? 
o Legit old users get kicked off



• How can the target defend itself?

• Approach #1: tons of memory
How much is enough?
Depends on resources attacker can bring to bear 
(threat model), which might be hard to know



•Approach #2: identify bad actors & refuse 
connections

Hard because identification is on IP address
o We cannot require a password because doing so requires an 

established connection!
For a public Internet service, who knows which 
addresses customers might come from?
Plus: attacker can spoof addresses since they don’t 
need to complete TCP 3-way handshake 

•Approach #3: don’t keep state!  
“SYN cookies”; only works for spoofed SYN flooding



Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

•Server: when SYN arrives, rather than keeping 
state locally, send it to the client …

•Client needs to return the state in order to 
established connection 

Server only saves 
state here

Do not save state 
here; give to client



Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

•Server: when SYN arrives, rather than keeping 
state locally, send it to the client …

•Client needs to return the state in order to 
established connection 

Server only saves 
state here

Do not save state 
here; give to client

Problem: the world isn’t so ideal!

TCP doesn’t include an easy way to 
add a new <State> field like this.

Is there any way to get the same 
functionality without having to 
change TCP clients?



Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

•Server: when SYN arrives, encode connection 
state entirely within SYN-ACK’s sequence # y

y = encoding of necessary state, using server secret

•When ACK of SYN-ACK arrives, server only 
creates state if value of y from it agrees w/ secret

Server only creates 
state here

Do not create
state here

Instead, encode it here



• Illustrates general strategy: rather than holding 
state, encode it so that it is returned when 
needed

•For SYN cookies, attacker must complete
3-way handshake in order to burden server

Can’t use spoofed source addresses

•Note #1: strategy requires that you have 
enough bits to encode all the state

(This is just barely the case for SYN cookies)

•Note #2: if it’s expensive to generate or check 
the cookie, then it’s not a win



• Rather than exhausting network or memory resources, 
attacker can overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to 
attacker compared to target (asymmetry)



The link sends a request to the web server that 
requires heavy processing by its “backend database”.



•  



• Rather than exhausting network or memory resources, 
attacker can overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to 
attacker compared to target (asymmetry)

• Defenses against such attacks?
• Approach #1: Only let legit users issue expensive requests

Relies on being able to identify/authenticate them
Note: that this itself might be expensive!

• Approach #2: Force legit users to “burn” cash
• Approach #3: Over-provisioning ($$$)



•Defending against program flaws requires:
Careful design and coding/testing/review
Consideration of behavior of defense mechanisms
o E.g. buffer overflow detector that when triggered halts 

execution to prevent code injection ⇒ denial-of-service

•Defending resources from exhaustion is hard.  
Requires:

Isolation and scheduling mechanisms
o Keep adversary’s consumption from affecting others

Reliable identification of different users



67



•Harden set of systems against external attack

•More network services → greater risk
Larger attack surface

•Can turn off unnecessary services
Requires knowledge of all services running
Sometimes trusted users require access

•Scaling issues
Hundreds/thousands of systems
Many different operating systems, hardware, users



•Possibly more scalable defense: Reduce risk by 
blocking in the network outsiders from having 
unwanted access your network services

Interpose a firewall the traffic to/from the outside must 
traverse
Chokepoint can cover thousands of hosts
o Where in everyday experience do we see such chokepoints?

Internet Internal
Network



• Firewall enforces an (access control) policy:
Who is allowed to talk to whom, accessing what service?

• Distinguish between inbound & outbound connections
Inbound: attempts by external users to connect to services on 
internal machines
Outbound: internal users to external services
Why?  Because fits with a common threat model.  There are 
thousands of internal users (and we’ve vetted them).  There are 
billions of outsiders.

• Conceptually simple access control policy:
Permit inside users to connect to any service
External users restricted: 
o Permit connections to services meant to be externally visible
o Deny connections to services not meant for external access



•Default allow
Begin by permitting external access to services
Turn off as problems recognized

•Default deny
Begin by denying external access to services
Turn on access on case-by-case basis

• Generally we use default deny
Flexibility vs conservative design
Flaws in default deny are noticed more quickly (less 
painfully)



•Stateful packet filter is a router that checks each 
packet against security rules and decides to forward 
or drop it

Firewall keeps track of all connections (inbound/outbound)
Each rule specifies which connections are allowed/denied
(access control policy)
A packet is forwarded if it is part of an allowed connection

Internet Internal
Network



•Permits TCP connection that is
Initiated by host 4.5.5.4
Connecting to port 80 of host 3.1.1.2

•Permits any packet ( ) associated with connection

•Firewall keeps table of allowed active connections
Checks traffic against table



•Permits TCP connection that is
Initiated by any internal host ( )
Connecting to port 80 of 3.1.1.2 on external network

•Permits any packet ( ) associated with connection

indicates network interface



•Permits all outbound TCP connections
Those initiated by internal hosts

•Permits inbound TCP connection to web server 
(port 80) at IP address 1.2.2.3



o Firewall should permit outbound TCP connections
(i.e., those that are initiated by internal hosts)

o Firewall should permit inbound TCP connection to our public 
webserver at IP address 1.2.2.3



Secure External Access to Inside Machines

• Often need to provide secure remote access to a 
network protected by a firewall
– Remote access, telecommuting, branch offices, …

• Create secure channel (Virtual Private Network, or VPN) 
to tunnel traffic from outside host/network to inside 
network
– Provides Authentication, Confidentiality, Integrity
– However, also raises perimeter issues
    (Try it yourself at http://www.net.berkeley.edu/vpn/)

Internet Company

Yahoo

User

VPN 
server

Fileserver



Firewall Advantages

• Central control – easy administration and update
– Single point of control: update one config to change 

security policies
– Potentially allows rapid response

• Easy to deploy – transparent to end users
– Easy incremental/total deployment to protect 1000’s

• Addresses an important problem
– Security vulnerabilities in network services are rampant
– Easier to use firewall than to directly secure code …



Firewall Disadvantages
• Functionality loss – less connectivity, less risk

– May reduce network’s usefulness
– Some applications don’t work with firewalls

• Two peer-to-peer users behind different firewalls

• The malicious insider problem
– Assume insiders are trusted

• Malicious insider (or anyone gaining control of internal machine) can 
wreak havoc

• Firewalls establish a security perimeter
– Like Eskimo Pies: “hard crunchy exterior, soft creamy 

center”
– Threat from travelers with laptops, cell phones, …


