
1

Network Security
DNS, DDOS and Firewalls

April 15, 2015
Lecture by Kevin Chen

Slides credit: Vern Paxson, Dawn Song

2

DNS Background

3

Host Names vs. IP addresses

• Host names
– Examples: and
– Mnemonic name appreciated by humans
– Variable length, full alphabet of characters
– Provide little (if any) information about location

• IP addresses
– Examples: and
– Numerical address appreciated by routers
– Fixed length, binary number
– Hierarchical, related to host location

4

Mapping Names to Addresses

• Domain Name System (DNS)
– Hierarchical name space divided into zones
– Zones distributed over collection of DNS servers
– (Also separately maps addresses to names)

• Hierarchy of DNS servers
– Root (hardwired into other servers)
– Top-level domain (TLD) servers
– “Authoritative” DNS servers (e.g. for berkeley.edu)

5

Mapping Names to Addresses

• Domain Name System (DNS)
– Hierarchical name space divided into zones
– Zones distributed over collection of DNS servers
– (Also separately maps addresses to names)

• Hierarchy of DNS servers
– Root (hardwired into other servers)
– Top-level domain (TLD) servers
– “Authoritative” DNS servers (e.g. for berkeley.edu)

• Performing the translations
– Each computer configured to contact a resolver

6

requesting host
xyz.poly.edu gaia.cs.umass.edu

root DNS server (‘.’)

local DNS server
(resolver)

dns.poly.edu

1

2
3

4

5

6
authoritative DNS server

(‘umass.edu’, ‘cs.umass.edu’)
dns.cs.umass.edu

78

TLD DNS server (‘.edu’)

Example
Host at xyz.poly.edu

wants IP address for
gaia.cs.umass.edu

7

DNS Protocol

DNS protocol: query and reply messages, both with
same message format

(Mainly uses UDP transport rather than TCP)

Message header:
• Identification: 16 bit # for

query, reply to query uses
same #

• Replies can include “Authority”
(name server responsible for
answer) and “Additional” (info
client is likely to look up soon
anyway)

• Replies have a Time To Live
(in seconds) for caching

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

8

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Use Unix “ ” utility to look up DNS
address (“ ”) for hostname

9

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

These are just comments from itself
with details of the request/response

10

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Transaction identifier

11

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Here the server echoes back the
question that it is answering

12

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Answer” tells us its address is and
we can cache the result for 21,600 seconds

13

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Authority” tells us the name servers responsible for
the answer. Each record gives the hostname of a
different name server (“ ”) for names in
We should cache each record for 11,088 seconds.

14

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 11088 IN NS STRAWB.mit.edu.

;; ADDITIONAL SECTION:
STRAWB.mit.edu. 126738 IN A 18.71.0.151
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

“Additional” provides extra information to save us from
making separate lookups for it, or helps with bootstrapping.

Here, it tells us the IP addresses for the hostnames of the
name servers. We add these to our cache.

15

Non-Eavesdropping Threats: DNS
• DHCP attacks show brutal power of attacker who can

eavesdrop
• Consider attackers who can’t eavesdrop - but still aim

to manipulate us via how protocols function
– As a DNS resolver
– Off-path DNS spoofing

• DNS: path-critical for just about everything we do
– Maps hostnames ⇔ IP addresses
– Design only scales if we can minimize lookup traffic

• #1 way to do so: caching
• #2 way to do so: return not only answers to queries, but

additional info that will likely be needed shortly

• Directly interacting w/ DNS: dig program on Unix
– Allows querying of DNS system
– Dumps each field in DNS responses

16

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

What happens if the mit.edu server
returns the following to us instead?

17

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

We dutifully store in our cache a mapping of
 to an IP address under

MIT’s control. (It could have been any IP
address they wanted, not just one of theirs.)

18

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

In this case they chose to make the
mapping disappear after 30 seconds.
They could have made it persist for
weeks, or disappear even quicker.

19

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

How do we fix such cache poisoning?

20

dig eecs.mit.edu A
; ; <<>> DiG 9.6.0-APPLE-P2 <<>> eecs.mit.edu a
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19901
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 3, ADDITIONAL: 3

;; QUESTION SECTION:
;eecs.mit.edu. IN A

;; ANSWER SECTION:
eecs.mit.edu. 21600 IN A 18.62.1.6

;; AUTHORITY SECTION:
mit.edu. 11088 IN NS BITSY.mit.edu.
mit.edu. 11088 IN NS W20NS.mit.edu.
mit.edu. 30 IN NS eecs.berkeley.edu.

;; ADDITIONAL SECTION:
eecs.berkeley.edu. 30 IN A 18.6.6.6
BITSY.mit.edu. 166408 IN A 18.72.0.3
W20NS.mit.edu. 126738 IN A 18.70.0.160

Don’t accept Additional records unless they’
re for the domain we’re looking up

E.g., looking up ⇒ only accept
additional records from *

No extra risk in accepting these since server could
return them to us directly in an Answer anyway.

=

21

DNS Threats, con’t

What about blind spoofing?
• Say we look up

; how can an off-
path attacker feed us a
bogus answer before the
legitimate server replies?

• How can such an attacker
even know we are looking up

? Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

…

22

DNS Blind Spoofing, con’t

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

So this will be k+1

They observe ID k here…
…

Originally, identification field
incremented by 1 for each
request. How does attacker
guess it?

Once they know we’re looking
it up, they just have to guess
the Identification field and reply
before legit server.

How hard is that?

Fix?

23

DNS Blind Spoofing, con’t

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits

Attacker can send lots of replies,
not just one …

However: once reply from legit
server arrives (with correct
Identification), it’s cached and
no more opportunity to poison it.
Victim is innoculated!

Once we randomize the
Identification, attacker has a
1/65536 chance of guessing it
correctly.
Are we pretty much safe?

Unless attacker can send
1000s of replies before legit
arrives, we’re likely safe -
phew! ?

24

DNS Blind Spoofing (Kaminsky 2008)

• Two key ideas:
– Spoof uses Additional field (rather than Answer)
– Attacker can get around caching of legit replies by

generating a series of different name lookups:

…
…
…

…

25

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, con’t
For each lookup of ,
attacker returns a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
 … but also the cached record for

’s name server - so any future X
lookups go through the attacker’s machine

26

;; QUESTION SECTION:
;randomk.google.com. IN A

;; ANSWER SECTION:
randomk.google.com 21600 IN A

;; AUTHORITY SECTION:
google.com. 11088 IN NS mail.google.com

;; ADDITIONAL SECTION:
mail.google.com 126738 IN A 6.6.6.6

Kaminsky Blind Spoofing, con’t
For each lookup of ,
attacker returns a bunch of records like this,
each with a different Identifier

Once they win the race, not only have they poisoned
 … but also the cached record for

’s name server - so any future X
lookups go through the attacker’s machine

27

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

16 bits 16 bits
Central problem: all that tells a
client they should accept a
response is that it matches the
Identification field.

With only 16 bits, it lacks
sufficient entropy: even if truly
random, the search space an
attacker must brute force is too
small.

Where can we get more
entropy? (Without requiring a
protocol change.)

28

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

DNS (primarily) uses UDP for
transport rather than TCP.

UDP header has:
 16-bit Source & Destination ports
 (identify processes, like w/ TCP)
 16-bit checksum, 16-bit length

 SRC port DST port

checksum length

16 bits 16 bits

UDP Payload

UDP Header

29

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

DNS (primarily) uses UDP for
transport rather than TCP.

UDP header has:
 16-bit Source & Destination ports
 (identify processes, like w/ TCP)
 16-bit checksum, 16-bit length

Src=53 Dest=53

checksum length

16 bits 16 bits

For requestor to receive DNS
reply, needs both correct
Identification and correct ports.

On a request, DST port = 53.
SRC port usually also 53 - but
not fundamental, just convenient

Total entropy: 16 bits

30

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

Total entropy: ? bits

31

Defending Against Blind Spoofing

Additional information
(variable # of resource records)

Questions
(variable # of resource records)

Answers
(variable # of resource records)

Authority
(variable # of resource records)

Authority RRs # Additional RRs

Identification Flags

Questions # Answer RRs

Src=rnd Dest=53

checksum length

16 bits 16 bits
“Fix”: use random source port

32 bits of entropy makes it
orders of magnitude harder for
attacker to guess all the
necessary fields and dupe victim
into accepting spoof response.

This is what primarily “secures”
DNS today. (Note: not all
resolvers have implemented
random source ports!)

Total entropy: 32 bits

32

•Denial-of-Service (DoS)
•Preventing legitimate users from using a service

• We need to consider our threat model
• What might motivate a DoS attack?

42

Credit: http://thehackernews.com/

44

Credit: Akamai, The State of the Internet Q4 2014

45

Credit: http://thehackernews.com/

•Showing off / entertainment / ego
•Competitive advantage

Maybe commercial, maybe just to win

•Vendetta / denial-of-money
•Extortion
•Political statements
• Impair defenses
•Espionage
•Warfare

•Types of DoS
Network-level DoS
Application-level DoS

•DDoS: Distributed Denial-of-Service
•Amplification is key:

Traffic volume amplification
o E.g. third parties amplify traffic
Computation resource amplification
o E.g. memory consumption, CPU cycles

47

•How could you DoS a target’s Internet access?
Flooding with lots of packets (brute-force)
DDoS: flood with packets from many sources
Amplification: Abuse patsies who will amplify your traffic

•What resources does attacker need?
At least as much sending capacity (“bandwidth”) as the
bottleneck link of the target’s Internet connection
o Attacker sends maximum-sized packets

Or: overwhelm the rate at which the bottleneck router can
process packets
o Attacker sends minimum-sized packets to maximize packet arrival rate

• Suppose an attacker has high bandwidth (a “big pipe”)

• It sends packets to the target at a high rate

• How can the target defend against onslaught?
Install a network filter to discard any packets that arrive with
attacker’s IP address as their source
o E.g., drop * 66.31.1.37:* -> *:*
o Or it can leverage any other pattern in the flooding traffic that’s not in

benign traffic
o Attacker’s IP address = means of identifying misbehaving user

… but DoS filters can be easily evaded
•Make traffic appear as though it’s from many
hosts

Spoof the source address so it can’t be used to filter
o Just pick a random 32-bit number of each packet sent

How does a defender filter this?
o They don’t!
o Best they can hope for is that operators around the world

implement anti-spoofing mechanisms (today about 75% do)

• Use many hosts to send traffic rather than just one
Requires defender to install complex filters
How many hosts is “enough” for the attacker?
o Today they are very cheap to acquire … :-(

•Asymmetries allow attackers to consume victim
resources with little comparable effort

Makes DoS easier to launch
Defense costs much more than attack

•Particularly dangerous form of asymmetry:
amplification

Attacker leverages third party resources to increase
workload

•Amplification example: DNS lookups
•Attacker spoofs DNS request from open DNS
servers, seemingly from the target

Small attacker packets yield large flooding packets
o Since the reply includes a copy of the query, plus the answer, etc

•Note #1: these examples involve blind spoofing
So for network-layer flooding, generally only works for
UDP-based protocols (can’t establish TCP conn.)

•Note #2: victim doesn’t see spoofed source
addresses

Addresses are those of actual intermediary systems

•Recall TCP’s 3-way connection establishment
handshake

Goal: agree on initial sequence numbers

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters)Attacker doesn’t

even need to
send this ack

•Recall TCP’s 3-way connection establishment
handshake

Goal: agree on initial sequence numbers

•So a single SYN from an attacker suffices to force
the server to spend some memory

Client (initiator)

SYN, SeqNum = x

SYN + ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

Server creates state
associated with
connection here
(buffers, timers,
counters)Attacker doesn’t

even need to
send this ack

• Attacker targets memory rather than network capacity

• Every (unique) SYN that the attacker sends burdens the
target

• What should target do when it has no more memory for
a new connection?

No good answer
Refuse new connection?
o Legit new users can’t access service
Evict old connections to make room?
o Legit old users get kicked off

• How can the target defend itself?

• Approach #1: tons of memory
How much is enough?
Depends on resources attacker can bring to bear
(threat model), which might be hard to know

•Approach #2: identify bad actors & refuse
connections

Hard because identification is on IP address
o We cannot require a password because doing so requires an

established connection!
For a public Internet service, who knows which
addresses customers might come from?
Plus: attacker can spoof addresses since they don’t
need to complete TCP 3-way handshake

•Approach #3: don’t keep state!
“SYN cookies”; only works for spoofed SYN flooding

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

•Server: when SYN arrives, rather than keeping
state locally, send it to the client …

•Client needs to return the state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

Client (initiator)

SYN, SeqNum = x

S+A, SeqNum = y, Ack = x + 1, <State>

ACK, Ack = y + 1, <State>

Server

•Server: when SYN arrives, rather than keeping
state locally, send it to the client …

•Client needs to return the state in order to
established connection

Server only saves
state here

Do not save state
here; give to client

Problem: the world isn’t so ideal!

TCP doesn’t include an easy way to
add a new <State> field like this.

Is there any way to get the same
functionality without having to
change TCP clients?

Client (initiator)

SYN, SeqNum = x

SYN and ACK, SeqNum = y, Ack = x + 1

ACK, Ack = y + 1

Server

•Server: when SYN arrives, encode connection
state entirely within SYN-ACK’s sequence # y

y = encoding of necessary state, using server secret

•When ACK of SYN-ACK arrives, server only
creates state if value of y from it agrees w/ secret

Server only creates
state here

Do not create
state here

Instead, encode it here

• Illustrates general strategy: rather than holding
state, encode it so that it is returned when
needed

•For SYN cookies, attacker must complete
3-way handshake in order to burden server

Can’t use spoofed source addresses

•Note #1: strategy requires that you have
enough bits to encode all the state

(This is just barely the case for SYN cookies)

•Note #2: if it’s expensive to generate or check
the cookie, then it’s not a win

• Rather than exhausting network or memory resources,
attacker can overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

The link sends a request to the web server that
requires heavy processing by its “backend database”.

•

• Rather than exhausting network or memory resources,
attacker can overwhelm a service’s processing capacity

• There are many ways to do so, often at little expense to
attacker compared to target (asymmetry)

• Defenses against such attacks?
• Approach #1: Only let legit users issue expensive requests

Relies on being able to identify/authenticate them
Note: that this itself might be expensive!

• Approach #2: Force legit users to “burn” cash
• Approach #3: Over-provisioning ($$$)

•Defending against program flaws requires:
Careful design and coding/testing/review
Consideration of behavior of defense mechanisms
o E.g. buffer overflow detector that when triggered halts

execution to prevent code injection ⇒ denial-of-service

•Defending resources from exhaustion is hard.
Requires:

Isolation and scheduling mechanisms
o Keep adversary’s consumption from affecting others

Reliable identification of different users

67

•Harden set of systems against external attack

•More network services → greater risk
Larger attack surface

•Can turn off unnecessary services
Requires knowledge of all services running
Sometimes trusted users require access

•Scaling issues
Hundreds/thousands of systems
Many different operating systems, hardware, users

•Possibly more scalable defense: Reduce risk by
blocking in the network outsiders from having
unwanted access your network services

Interpose a firewall the traffic to/from the outside must
traverse
Chokepoint can cover thousands of hosts
o Where in everyday experience do we see such chokepoints?

Internet Internal
Network

• Firewall enforces an (access control) policy:
Who is allowed to talk to whom, accessing what service?

• Distinguish between inbound & outbound connections
Inbound: attempts by external users to connect to services on
internal machines
Outbound: internal users to external services
Why? Because fits with a common threat model. There are
thousands of internal users (and we’ve vetted them). There are
billions of outsiders.

• Conceptually simple access control policy:
Permit inside users to connect to any service
External users restricted:
o Permit connections to services meant to be externally visible
o Deny connections to services not meant for external access

•Default allow
Begin by permitting external access to services
Turn off as problems recognized

•Default deny
Begin by denying external access to services
Turn on access on case-by-case basis

• Generally we use default deny
Flexibility vs conservative design
Flaws in default deny are noticed more quickly (less
painfully)

•Stateful packet filter is a router that checks each
packet against security rules and decides to forward
or drop it

Firewall keeps track of all connections (inbound/outbound)
Each rule specifies which connections are allowed/denied
(access control policy)
A packet is forwarded if it is part of an allowed connection

Internet Internal
Network

•Permits TCP connection that is
Initiated by host 4.5.5.4
Connecting to port 80 of host 3.1.1.2

•Permits any packet () associated with connection

•Firewall keeps table of allowed active connections
Checks traffic against table

•Permits TCP connection that is
Initiated by any internal host ()
Connecting to port 80 of 3.1.1.2 on external network

•Permits any packet () associated with connection

indicates network interface

•Permits all outbound TCP connections
Those initiated by internal hosts

•Permits inbound TCP connection to web server
(port 80) at IP address 1.2.2.3

o Firewall should permit outbound TCP connections
(i.e., those that are initiated by internal hosts)

o Firewall should permit inbound TCP connection to our public
webserver at IP address 1.2.2.3

Secure External Access to Inside Machines

• Often need to provide secure remote access to a
network protected by a firewall
– Remote access, telecommuting, branch offices, …

• Create secure channel (Virtual Private Network, or VPN)
to tunnel traffic from outside host/network to inside
network
– Provides Authentication, Confidentiality, Integrity
– However, also raises perimeter issues
 (Try it yourself at http://www.net.berkeley.edu/vpn/)

Internet Company

Yahoo

User

VPN
server

Fileserver

Firewall Advantages

• Central control – easy administration and update
– Single point of control: update one config to change

security policies
– Potentially allows rapid response

• Easy to deploy – transparent to end users
– Easy incremental/total deployment to protect 1000’s

• Addresses an important problem
– Security vulnerabilities in network services are rampant
– Easier to use firewall than to directly secure code …

Firewall Disadvantages
• Functionality loss – less connectivity, less risk

– May reduce network’s usefulness
– Some applications don’t work with firewalls

• Two peer-to-peer users behind different firewalls

• The malicious insider problem
– Assume insiders are trusted

• Malicious insider (or anyone gaining control of internal machine) can
wreak havoc

• Firewalls establish a security perimeter
– Like Eskimo Pies: “hard crunchy exterior, soft creamy

center”
– Threat from travelers with laptops, cell phones, …

