Computer Security Course.

Song

Software Security (ll):
Other types of software
vulnerabilities

Dawn Song 1

#293 HRE-THR 850 1930
ALICE SMITH
COACH

SPECIAL INSTRUX:
NONE

: Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
' Dr. +1Alice Smithhhhhhhhhhhhh
Gender: Date of Birth: Travelers are required to enter a middle name/initial If one Is

listed on thelr government-Issued photo 1D.

Female %) 01/24/93

Some younger travelers are not required to present an ID
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): @

+ Redress Number (optional): 2]

Seat Request:
® No Preference () Aisle () Window

#293 HRE-THR 850 1930
ALICE SMITHHHHHHHHHHH
HHACH

SPECIAL INSTRUX: NONE

‘ Traveler Information

Traveler 1 - Adults (age 18 to 64)

To comply with the TSA Secure Flight program, the traveler information listed here must exactly match the
information on the government-issued photo ID that the traveler presents at the airport.

Title (optional): First Name: Middle Name: Last Name:
Dr. ‘4 Alice Smith First
Gender: Date of Birth: Travelers are required to enter a middle name/initial If one Is

listed on thelr government-issued photo 1D.

_Female 143 01/24/93

Some younger travelers are not required to present an 1D
when traveling within the U.S. Learn more

+ Known Traveler Number/Pass ID (optional): ke

+ Redress Number (optional): [?]

Seat Request:
@ No Preference () Aisle () Window

#293 HRE-THR 850 1930
ALICE SMITH
FIRST

SPECIAL INSTRUX:
NONE

Example #1

void vulnerable() {
char name[20];

gets(name);

Example #2

void vulnerable() {
char instrux[80] = “none”;
char name[20];

gets(name);

Example #3

void vulnerable() {
char cmmd[80]:;
char line[512]:

strncpy(cmd,”/usr/bin/finger”, 80);
gets(line);

execv(cmd, ...);

Example #4

void vulnerable() {
int (*fnptr)();
char buf[80];

gets(buf);

Example #5

volid vulnerable() {
Int seatinfirstclass = 0O;
char name[20];

gets(name);

Example #6

volid vulnerable() {
Int authenticated = 0O:
char name[20];

gets(name);

Common Coding Errors

* Input validation vulnerabilities
* Memory management vulnerabilities

* TOCTTOU vulnerability (later)

Input validation
vulnerabilities

* Program requires certain
assumptions on inputs to run
properly

* Without correct checking for inputs
— Program gets exploited

 Example:
— Buffer overflow
— Format string

Example |

unsigned int size;
Data **datalist;

size = GetUntrustedSizeValue();

datalist = (data **)malloc(size * sizeof(Data *));
. for(int i=0; i<size; i++) {

datalist[i] = InitData();

}
. datalist[size] = NULL;

1:
2:
3:
4:
5:
6
7:
8:
9
10:

Dawn Song 17

Example Il

xample Il

char buf[80];
void vulnerable() {
int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {
error(“length too large, nice try!”);
return;
}
memcpy(buf, p, len);
0:}

BLoOoNOUNRWNE

What's wrong with this code?
Hint - memcpy () prototype:

— volid *memcpy(void *dest, const void *src, size_t n);

Definition of size t: typedef unsigned int size_t;
Do you see it now?

Dawn Song 18

Implicit Casting Bug

» Attacker provides a negative value for len
—if won’t notice anything wrong
— Execute memcpy () with negative third arg

—Third arg is implicitly cast to an unsigned int, and
becomes a very large positive int

—memcpy () copies huge amount of memory into buf,
yielding a buffer overrun!

* A signed/unsigned or an implicit casting bug
—Very nasty - hard to spot

 C compiler doesn’'t warn about type mismatch
between signed int and unsigned int
— Silently inserts an implicit cast

Example Il (Integer
Overflow)

size_t len = read_int_from_network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

xample Il

1:
2:
3:
4.
5:

 What's wrong with this code?
— No buffer overrun problems (5 spare bytes)
— No sign problems (all ints are unsigned)

 But, 1len+5 can overflow if 1en is too large
—If len = OXFFFFFFFF, then len+5is 4

— Allocate 4-byte buffer then read a lot more than 4 bytes
Into it: classic buffer overrun!

* Know programming language’s semantics well to

avoid pitfalls Dawn Song .

Example IV

: char* ptr = (char*) malloc(SIZE);
:if (err) {

abrt = 1;
. free(ptr);

D}
. if (abrt) {

logError(“operation aborted before commit”, ptr);

L}

 Use-after-free
 Corrupt memory

http://cwe.mitre.org Dawn Song

21

Example V

: char* ptr = (char*) malloc(SIZE);
. if (err) {

. abrt =1,

. free(ptr);

r)}

1.’.r.ee(ptr) ;

e Double-free error
« Corrupts memory-management data structure

http://owasp.org Dawn Song

22

Example VI: Format string
oroblem

Format Functions

Used to convert simple C data types
to a string representation

Variable number of arguments
Including format string

Example
— printf(“%s number %d”, “block”, 2)
— Qutput: “block number 2”

Format String Parameters

m
er

%d
%U

%X
%S

%n

Decimal (int)

Unsigned decimal (unsigned
int)

Hexadecimal (unsigned int)

String ((const) (unsigned)
char *)

bytes written so far, (* int)

Value
Value

Value
Reference

Reference

Example VI: Format string
problem

xample VI

int func(char *user) {
fprintf(stderr, user);

}

 Problem: what if *user = "%s%s%s%s%s%s
%s” ?7

— %s displays memory
— Likely to read from an illegal address
— If not, program will print memory contents.

Correct form: fprintf(stdout, “%s”, user);

Stack and Format Strings

* Function behavior is controlled by the format
string

* Retrieves parameters from stack as
requested: “%"”

 Example:

A | Address of the format L
%d ha‘s nﬁgqﬁ[j‘ess, number %d has:

70 | ’\7allhg'o§‘\?a)riablel

a | Value of variable a
&a | Address of variable a

printf

View Stack

o printf(“%08x. %08x. %08x. %08x\n")
—40012983.0806ba43.bfffff4a.0802738b

« display 4 values from stack

Read Arbitrary Memory

 charinput[] = “\x10\x01\x48\x08 %08x. %08x.
%08x. %08x|%s|"”;

printf(input)
— Will display memory from 0x08480110

* Uses reads to move stack pointer into format string

* %s will read at 0x08480110 till it reaches null byte

Writing to arbitrary memory

+ printf(“hello %n", &temp)

— writes ‘6’ into temp.

* printf(“%08x.%08x.%08x.%08x.%n")

Vulnerable functions

Any function using a format string.

Printing:
printf, fprintf, sprintf, ...
vprintf, vfprintf, vsprintf, ...

Logqging:
syslog, err, warn

An Exploit Example

syslog(“Reading username:”),
read_socket(username);
syslog(username);

\

Welcome to InsecureCorp. Please login.
Loglin: EvilUser%s%s..%400n..%n
root@server> _

Why The Bug EXxists

 C language has poor support for
variable-argument functions

— Callee doesn’t know the number of
actual args

* No run-time checking for consistency
between format string and other args

* Programmer error

Real-world Vulnerability
Samples

 First exploit discovered in June 2000.
« Examples:

— wu-ftpd 2.*: remote root
— Linux rpc.statd: remote root
— |RIX telnetd: remote root

— BSD chpass: local root

What are software
vulnerabilities?

* Flaws in software
* Break certain assumptions important

for security

— E.qg., what assumptions are broken in buffer
overflow?

Why does software have
vulnerabilities?

* Programmers are humans!
— Humans make mistakes!

* Programmers are not security-aware

* Programming languages are not
designed well for security

What can you do?

* Programmers are humans!
— Humans make mistakes!
— Use tools! (next lecture)

* Programmers were not security aware

— Learn about different common classes of
coding errors

* Programming languages are not designed
well for security
— Pick better languages

Dawn Song 37

Computer Security Course.

Song

Software Security (l1):
Defenses against Memory-Safety
Exploits

Dawn Song 38

Preventing hijacking attacks

Fix bugs:

* Audit software

 Automated tools: Coverity, Prefast/Prefix, Fortify
 Rewrite software in a type-safe language (Java, ML)
« Difficult for existing (legacy) code ...

AII0+ overflow, but prevent code execution

Add runtime code to detect overflows exploits:
 Halt process when overflow exploit detected
« StackGuard, Libsafe

Control-hijacking Attack
Space

00

Code Injection

Dawn Song

Defense |: non-execute w~x)

Prevent attack code execution by marking stack
and heap as non-executable

 NX-bit on AMD Athlon 64, XD-bit on Intel P4 Prescott
—NX bit in every Page Table Entry (PTE)

* Deployment:
—Linux (via PaX project); OpenBSD
—Windows: since XP SP2 (DEP)
- Boot.ini : /noexecute=0ptin or

AlwaysOn
- Visual Studio: /NXCompat[:NO]

Effectiveness and
Limitations

* Limitations:
—Some apps need executable heap (e.qg. JITs).
—Does not defend against exploits using return-oriented programming
‘\0(\'5
Code Injection

)eﬁe Stack Non-Execute (NX)*

Heap Non-Execute (NX)*

* When Applicable Dawn Song 42

Return-Oriented Programming (ROP)

* ret2lib exploits
— Reuse existing functions, no code injection required

Ret-2-lib Exploit

So suppose we want to spawn a shell by exploiting a buffer overflow
vulnerability: Shell Code: system(“/bin/sh”)

]
To previous stack
frame pointer

“/bin/sh”

crafted argument for
system

arguments

return address
stack frame pointer

crafted return address

> A
To tthet' X To the entry point of
instruction a system
which this buffer Y

called

/hen the function exits, it returns to the entry of the libc function system .
/ith the crafted argument, the user gets a shell !!!

Return-Oriented Programming (ROP)

* ret2lib exploits
— Reuse existing functions, no code injection required

* Return-oriented programming

— Reuses existing code chunks (called gadgets)
— The gadgets could provide a Turing-complete

PRy RG-S P,
e’

. __-_-"‘\.———
Insns ... ret insns ... ret
C library
insns ... ret insns ... ret insns ... ret
£l & / | | |

stack
pointer Buchanan et. al, BlackHat 2008 45

Defense |l: Address Randomization

ASLR: (Address Space Layout Randomization)

Start stack at a random location
Start heap at a random locatioin

Map shared libraries to rand location in
process memory

= Attacker cannot jump directly to
exec function

Deployment: (/DynamicBase)

e Windows Vista: 8 bits of randomness
for DLLs

— aligned to 64K page in a 16MB
region = 256 choices

 Linux (via PaX): 16 bits of randomness
for libraries

More effective on 64-bit architectures

Other randomization methods:

Sys-call randomization: randomize

sys-call id’s

Inctriictinn St Randomizartinn (IRR)

Reserved for
Kernal

unused
user stack

~~

shared libraries
4P

run time heap

sta ata
segment

text segment
(program)

unused

L —

-OXFFFFFFFF

-OxCOOOOO006
-OXBFF9AB20

-0x40000000

-Ox08048000
-OX00000000

Effectiveness and

Limitations
e Limitations

— Randomness is limited

— Some vulnerabilities can allow secret to

yf2alad
Code Injection

)eﬁe Stack Non-Execute (NX)*
ASLR

Heap Non-Execute (NX)*
ASLR

* When Applicable Dawn Song 47

Defense lll: StackGuard

e Run time tests for stack
integrity

* Embed “canaries” in stack
frames and verify their
Integrity prior to function
return

arguments

return address

stack frame

pointer

CANARY

local variables

Canary Types

e Random canary:
— Random string chosen at program startup.
— Insert canary string into every stack frame.

— Verify canary before returning from function.

e Exit program if canary changed. Turns potential exploit
into DoS.

— To exploit successfully, attacker must learn current
random string.

 Terminator canary: Canary = {0, newline, linefeed,
EOF}

— String functions will not copy beyond terminator.
— Attacker cannot use string functions to corrupt stack.

StackGuard (Cont.)

StackGuard implemented as a GCC patch.
— Program must be recompiled.

Low performance effects: 8% for Apache.

Note: Canaries don’t provide full proof protection.

— Some stack smashing attacks leave canaries
unchanged

Heap protection: PointGuard.

— Protects function pointers and setjmp buffers by
encrypting them: e.g. XOR with random cookie

— Less effective, more noticeable performance effects

StackGuard enhancements:
ProPolice

 ProPolice asm) - gcc3.4.1. (-fstack-protector)
— Rearrange stack layout to prevent ptr overflow.

Strlng arguments

Growt return address Protects pointer args and
stack frame local pointers from a
pointer buffer overflow
CANARY

local string

buffers

local string
variables

StaCk local non-buffer
G rowt variables

copy of pointer
args

jpointers, but no arrays

MS Visual Studio /GS [since

2003]
Compiler /GS option:
— Combination of ProPolice and Random canary.

— If cookie mismatch, default behavior is to call
_exit(3)

ion prolog: Function :
ub esp, 8 // allocate 8 bytes for cookie mov ecx, DWORD PTR [esp+¢
ov eax, DWORD PTR __ security cookiexor ecx, esp

or eax, esp // xor cookie with current esgcall @ __security check cookie
ov DWORD PTR [esp+8], eax //save in siddk esp, 8

Enhanced /GS in Visual Studio 2010:

— /GS protection added to all functions, unless can be proven
unnecessary

/GS stack frame

String arguments
Growt

return address

e mter . | Canary protects ret-addr and
xception handler frame

exception
handlers

CANARY

local string
buffers

local string
variables

Stack | Fiocainonbutter %\ointers, but no arrays
GrOWt variables

Effectiveness and

Limitations

* Limitation:
— Evasion with exception handler<when Applicable

‘\0(\5
)eﬁe Stack Non-Execute (NX)* ASLR
ASLR StackGuard(Canaries)
StackGuard(Canaries) ProPolice
ProPolice /GS
/GS
Heap Non-Execute (NX)* ASLR
ASLR PointGuard
PointGuard

Exceptio Non-Execute (NX)*
n ASLR

Handler

S 54

Evading /GS with exception handlers ,

« When exception is thrown, dispatcher
walks up exception list until handler is
found (else use default handler)

After overflow: handler points to
attacker’s code

exception triggered = control hijack crafted
Main point: exception is ptr
triggered before canary is buffer

checked

SEH frame

Defense |ll: SAFESEH and
SEHOP

 /SAFESEH: linker flag
— Linker produces a binary with a table of safe
exception handlers
— System will not jump to exception handler not on list

 /[SEHOP: platform defense (since win vista

SP1)

— Observation: SEH attacks typically corrupt the “next”
entry in SEH list.

— SEHOP: add a dummy record at top of SEH list

— When exception occurs, dispatcher walks up list and
verifies dummy record is there. If not, terminates process.

Effectiveness and

Limitations

e Limitations:

Exceptio Non-Execute (NX)*

Handler

— Reo\j\gire recompilation
S
Code Injection

)eﬁe Stack Non-Execute (NX)* ASLR
ASLR StacKGuard(Canaries)
StacKGuard(Canaries) ProPolice
ProPolice /GS
/GS

Heap Non-Execute (NX)* ASLR

ASLR PointGuard
PointGuard

ASLR
SAFESEH and SEHOP

* When Applicable

57

Defense |V: Libsafe

 Dynamically loaded library
(no need to recompile app.) S

« Intercepts calls to strcpy (dest, stack frme pointer
Src)

return address

— Validates sufficient space in _
current stack frame: Libsafe strcp

|frame-pointer - dest| >
strlen(src)

— If so, does strcpy. Otherwise,
terminates application

A

Effectiveness and
Limitations

e Limitations:

— Limited protection |
P\ * When Applicable
Stack Non-Execute (NX)* ASLR
ASLR StacKGuard(Canaries)
StacKGuard(Canaries) ProPolice
ProPolice /GS
/GS libsafe
libsafe
Heap Non-Execute (NX)* ASLR
ASLR PointGuard
PointGuard
Exceptio Non-Execute (NX)*
n ASLR
SAFESEH and SEHOP
Handler
S

59

Other Defenses

> StackShield

" At function prologue, copy return address RET and
SFP to “safe” location (beginning of data segment)

" Upon return, check that RET and SFP is equal to
copy.

" Implemented as assembler file processor (GCC)

» Control Flow Integrity (CFl)

" A combination of static and dynamic checking
" Statically determine program control flow
* Dynamically enforce control flow integrity

Effectiveness and

~ Limitations
 Many different kinds of attacks. Not

one sjlver bullet defense. + When Applicable

\O®

& Stack Non-Execute (NX)* ASLR
ASLR StacKGuard(Canaries)
StacKGuard(Canaries) ProPolice
ProPolice /GS
/GS libsafe
libsafe StackShield
StackShield

Heap Non-Execute (NX)* ASLR

ASLR PointGuard
PointGuard

Exceptio Non-Execute (NX)*
A ASLR

SAFESEH and SEHOP
Handler

S

61

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Example #1
	Example #2
	Example #3
	Example #4
	Example #5
	Example #6
	Common Coding Errors
	Input validation vulnerabilities
	Example I
	Example II
	Implicit Casting Bug
	Example III (Integer Overflow)
	Example IV
	Example V
	Example VI: Format string problem
	Format Functions
	Format String Parameters
	Example VI: Format string problem
	Stack and Format Strings
	View Stack
	Read Arbitrary Memory
	Writing to arbitrary memory
	Vulnerable functions
	An Exploit Example
	Why The Bug Exists
	Real-world Vulnerability Samples
	What are software vulnerabilities?
	Why does software have vulnerabilities?
	What can you do?
	Slide 38
	Preventing hijacking attacks
	Control-hijacking Attack Space
	Defense I: non-execute (W^X)
	Effectiveness and Limitations
	Return-Oriented Programming (ROP)
	Slide 44
	Return-Oriented Programming (ROP)
	Defense II: Address Randomization
	Effectiveness and Limitations
	Defense III: StackGuard
	Canary Types
	StackGuard (Cont.)
	StackGuard enhancements: ProPolice
	MS Visual Studio /GS [since 2003]
	/GS stack frame
	Effectiveness and Limitations
	Evading /GS with exception handlers
	Defense III: SAFESEH and SEHOP
	Effectiveness and Limitations
	Defense IV: Libsafe
	Effectiveness and Limitations
	Other Defenses
	Effectiveness and Limitations

